Quantum Theory of the Optical and Electronic Properties of Semiconductors

Quantum Theory of the Optical and Electronic Properties of Semiconductors

Author: Hartmut Haug

Publisher: World Scientific

Published: 2004

Total Pages: 472

ISBN-13: 9789812387561

DOWNLOAD EBOOK

This invaluable textbook presents the basic elements needed to understand and research into semiconductor physics. It deals with elementary excitations in bulk and low-dimensional semiconductors, including quantum wells, quantum wires and quantum dots. The basic principles underlying optical nonlinearities are developed, including excitonic and many-body plasma effects. Fundamentals of optical bistability, semiconductor lasers, femtosecond excitation, the optical Stark effect, the semiconductor photon echo, magneto-optic effects, as well as bulk and quantum-confined Franz-Keldysh effects, are covered. The material is presented in sufficient detail for graduate students and researchers with a general background in quantum mechanics.


Book Synopsis Quantum Theory of the Optical and Electronic Properties of Semiconductors by : Hartmut Haug

Download or read book Quantum Theory of the Optical and Electronic Properties of Semiconductors written by Hartmut Haug and published by World Scientific. This book was released on 2004 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: This invaluable textbook presents the basic elements needed to understand and research into semiconductor physics. It deals with elementary excitations in bulk and low-dimensional semiconductors, including quantum wells, quantum wires and quantum dots. The basic principles underlying optical nonlinearities are developed, including excitonic and many-body plasma effects. Fundamentals of optical bistability, semiconductor lasers, femtosecond excitation, the optical Stark effect, the semiconductor photon echo, magneto-optic effects, as well as bulk and quantum-confined Franz-Keldysh effects, are covered. The material is presented in sufficient detail for graduate students and researchers with a general background in quantum mechanics.


Quantum Theory of the Optical and Electronic Properties of Semiconductors

Quantum Theory of the Optical and Electronic Properties of Semiconductors

Author: Hartmut Haug

Publisher: World Scientific Publishing Company

Published: 2009-01-22

Total Pages: 484

ISBN-13: 9813101113

DOWNLOAD EBOOK

This invaluable textbook presents the basic elements needed to understand and research into semiconductor physics. It deals with elementary excitations in bulk and low-dimensional semiconductors, including quantum wells, quantum wires and quantum dots. The basic principles underlying optical nonlinearities are developed, including excitonic and many-body plasma effects. Fundamentals of optical bistability, semiconductor lasers, femtosecond excitation, the optical Stark effect, the semiconductor photon echo, magneto-optic effects, as well as bulk and quantum-confined Franz–Keldysh effects, are covered. The material is presented in sufficient detail for graduate students and researchers with a general background in quantum mechanics. This fifth edition includes an additional chapter on 'Quantum Optical Effects' where the theory of quantum optical effects in semiconductors is detailed. Besides deriving the 'semiconductor luminescence equations' and the expression for the stationary luminescence spectrum, results are presented to show the importance of Coulombic effects on the semiconductor luminescence and to elucidate the role of excitonic populations.


Book Synopsis Quantum Theory of the Optical and Electronic Properties of Semiconductors by : Hartmut Haug

Download or read book Quantum Theory of the Optical and Electronic Properties of Semiconductors written by Hartmut Haug and published by World Scientific Publishing Company. This book was released on 2009-01-22 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: This invaluable textbook presents the basic elements needed to understand and research into semiconductor physics. It deals with elementary excitations in bulk and low-dimensional semiconductors, including quantum wells, quantum wires and quantum dots. The basic principles underlying optical nonlinearities are developed, including excitonic and many-body plasma effects. Fundamentals of optical bistability, semiconductor lasers, femtosecond excitation, the optical Stark effect, the semiconductor photon echo, magneto-optic effects, as well as bulk and quantum-confined Franz–Keldysh effects, are covered. The material is presented in sufficient detail for graduate students and researchers with a general background in quantum mechanics. This fifth edition includes an additional chapter on 'Quantum Optical Effects' where the theory of quantum optical effects in semiconductors is detailed. Besides deriving the 'semiconductor luminescence equations' and the expression for the stationary luminescence spectrum, results are presented to show the importance of Coulombic effects on the semiconductor luminescence and to elucidate the role of excitonic populations.


Quantum Theory of the Optical and Electronic Properties of Semiconductors

Quantum Theory of the Optical and Electronic Properties of Semiconductors

Author: Hartmut Haug

Publisher:

Published: 1994

Total Pages:

ISBN-13: 9789814503853

DOWNLOAD EBOOK


Book Synopsis Quantum Theory of the Optical and Electronic Properties of Semiconductors by : Hartmut Haug

Download or read book Quantum Theory of the Optical and Electronic Properties of Semiconductors written by Hartmut Haug and published by . This book was released on 1994 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:


Quantum Theory of the Optical and Electronic Properties of Semiconductors

Quantum Theory of the Optical and Electronic Properties of Semiconductors

Author: Hartmut Haug

Publisher:

Published: 2009

Total Pages:

ISBN-13: 9789812838858

DOWNLOAD EBOOK


Book Synopsis Quantum Theory of the Optical and Electronic Properties of Semiconductors by : Hartmut Haug

Download or read book Quantum Theory of the Optical and Electronic Properties of Semiconductors written by Hartmut Haug and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:


Quantum Theory of the Optical and Electronic Properties of Semiconductors

Quantum Theory of the Optical and Electronic Properties of Semiconductors

Author: Hartmut Haug

Publisher: World Scientific Publishing Company

Published: 1994-10-31

Total Pages: 492

ISBN-13: 9813104783

DOWNLOAD EBOOK

This textbook presents the basic elements needed to understand and engage in research in semiconductor physics. It deals with elementary excitations in bulk and low-dimensional semiconductors, including quantum wells, quantum wires and quantum dots. The basic principles underlying optical nonlinearities are developed, including excitonic and many-body plasma effects. The fundamentals of optical bistability, semiconductor lasers, femtosecond excitation, optical Stark effect, semiconductor photon echo, magneto-optic effects, as well as bulk and quantum-confined Franz-Keldysh effects are covered. The material is presented in sufficient detail for graduate students and researchers who have a general background in quantum mechanics. Request Inspection Copy


Book Synopsis Quantum Theory of the Optical and Electronic Properties of Semiconductors by : Hartmut Haug

Download or read book Quantum Theory of the Optical and Electronic Properties of Semiconductors written by Hartmut Haug and published by World Scientific Publishing Company. This book was released on 1994-10-31 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook presents the basic elements needed to understand and engage in research in semiconductor physics. It deals with elementary excitations in bulk and low-dimensional semiconductors, including quantum wells, quantum wires and quantum dots. The basic principles underlying optical nonlinearities are developed, including excitonic and many-body plasma effects. The fundamentals of optical bistability, semiconductor lasers, femtosecond excitation, optical Stark effect, semiconductor photon echo, magneto-optic effects, as well as bulk and quantum-confined Franz-Keldysh effects are covered. The material is presented in sufficient detail for graduate students and researchers who have a general background in quantum mechanics. Request Inspection Copy


Electronic Properties of Doped Semiconductors

Electronic Properties of Doped Semiconductors

Author: B.I. Shklovskii

Publisher: Springer Science & Business Media

Published: 2013-11-09

Total Pages: 400

ISBN-13: 3662024039

DOWNLOAD EBOOK

First-generation semiconductors could not be properly termed "doped- they were simply very impure. Uncontrolled impurities hindered the discovery of physical laws, baffling researchers and evoking pessimism and derision in advocates of the burgeoning "pure" physical disciplines. The eventual banish ment of the "dirt" heralded a new era in semiconductor physics, an era that had "purity" as its motto. It was this era that yielded the successes of the 1950s and brought about a new technology of "semiconductor electronics". Experiments with pure crystals provided a powerful stimulus to the develop ment of semiconductor theory. New methods and theories were developed and tested: the effective-mass method for complex bands, the theory of impurity states, and the theory of kinetic phenomena. These developments constitute what is now known as semiconductor phys ics. In the last fifteen years, however, there has been a noticeable shift towards impure semiconductors - a shift which came about because it is precisely the impurities that are essential to a number of major semiconductor devices. Technology needs impure semiconductors, which unlike the first-generation items, are termed "doped" rather than "impure" to indicate that the impurity levels can now be controlled to a certain extent.


Book Synopsis Electronic Properties of Doped Semiconductors by : B.I. Shklovskii

Download or read book Electronic Properties of Doped Semiconductors written by B.I. Shklovskii and published by Springer Science & Business Media. This book was released on 2013-11-09 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: First-generation semiconductors could not be properly termed "doped- they were simply very impure. Uncontrolled impurities hindered the discovery of physical laws, baffling researchers and evoking pessimism and derision in advocates of the burgeoning "pure" physical disciplines. The eventual banish ment of the "dirt" heralded a new era in semiconductor physics, an era that had "purity" as its motto. It was this era that yielded the successes of the 1950s and brought about a new technology of "semiconductor electronics". Experiments with pure crystals provided a powerful stimulus to the develop ment of semiconductor theory. New methods and theories were developed and tested: the effective-mass method for complex bands, the theory of impurity states, and the theory of kinetic phenomena. These developments constitute what is now known as semiconductor phys ics. In the last fifteen years, however, there has been a noticeable shift towards impure semiconductors - a shift which came about because it is precisely the impurities that are essential to a number of major semiconductor devices. Technology needs impure semiconductors, which unlike the first-generation items, are termed "doped" rather than "impure" to indicate that the impurity levels can now be controlled to a certain extent.


The k p Method

The k p Method

Author: Lok C. Lew Yan Voon

Publisher: Springer Science & Business Media

Published: 2009-06-06

Total Pages: 452

ISBN-13: 3540928723

DOWNLOAD EBOOK

I ?rst heard of k·p in a course on semiconductor physics taught by my thesis adviser William Paul at Harvard in the fall of 1956. He presented the k·p Hamiltonian as a semiempirical theoretical tool which had become rather useful for the interpre- tion of the cyclotron resonance experiments, as reported by Dresselhaus, Kip and Kittel. This perturbation technique had already been succinctly discussed by Sho- ley in a now almost forgotten 1950 Physical Review publication. In 1958 Harvey Brooks, who had returned to Harvard as Dean of the Division of Engineering and Applied Physics in which I was enrolled, gave a lecture on the capabilities of the k·p technique to predict and ?t non-parabolicities of band extrema in semiconductors. He had just visited the General Electric Labs in Schenectady and had discussed with Evan Kane the latter’s recent work on the non-parabolicity of band extrema in semiconductors, in particular InSb. I was very impressed by Dean Brooks’s talk as an application of quantum mechanics to current real world problems. During my thesis work I had performed a number of optical measurements which were asking for theoretical interpretation, among them the dependence of effective masses of semiconductors on temperature and carrier concentration. Although my theoretical ability was rather limited, with the help of Paul and Brooks I was able to realize the capabilities of the k·p method for interpreting my data in a simple way.


Book Synopsis The k p Method by : Lok C. Lew Yan Voon

Download or read book The k p Method written by Lok C. Lew Yan Voon and published by Springer Science & Business Media. This book was released on 2009-06-06 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: I ?rst heard of k·p in a course on semiconductor physics taught by my thesis adviser William Paul at Harvard in the fall of 1956. He presented the k·p Hamiltonian as a semiempirical theoretical tool which had become rather useful for the interpre- tion of the cyclotron resonance experiments, as reported by Dresselhaus, Kip and Kittel. This perturbation technique had already been succinctly discussed by Sho- ley in a now almost forgotten 1950 Physical Review publication. In 1958 Harvey Brooks, who had returned to Harvard as Dean of the Division of Engineering and Applied Physics in which I was enrolled, gave a lecture on the capabilities of the k·p technique to predict and ?t non-parabolicities of band extrema in semiconductors. He had just visited the General Electric Labs in Schenectady and had discussed with Evan Kane the latter’s recent work on the non-parabolicity of band extrema in semiconductors, in particular InSb. I was very impressed by Dean Brooks’s talk as an application of quantum mechanics to current real world problems. During my thesis work I had performed a number of optical measurements which were asking for theoretical interpretation, among them the dependence of effective masses of semiconductors on temperature and carrier concentration. Although my theoretical ability was rather limited, with the help of Paul and Brooks I was able to realize the capabilities of the k·p method for interpreting my data in a simple way.


Quantum Theory of Real Materials

Quantum Theory of Real Materials

Author: James R. Chelikowsky

Publisher: Springer Science & Business Media

Published: 1996-02-29

Total Pages: 580

ISBN-13: 9780792396666

DOWNLOAD EBOOK

A Festschrift in honor of Professor Marvin L. Cohen This volume is a Festschrift in honor of Professor Marvin L. Cohen. The articles, contributed by leading researchers in condensed matter physics, high-light recent advances in the use of quantum theory to explain and predict properties of real materials. The invention of quantum mechanics in the 1920's provided detailed descriptions of the electronic structure of atoms. However, a similar understanding of solids has been achieved only in the past 30 years, owing to the complex electron-ion and electron electron interactions in these systems. Professor Cohen is a central figure in this achievement. His development of the pseudopotential and total energy methods provided an alternate route using computers for the exploration of solids and new materials even when they have not yet been synthesized. Professor Cohen's contributions to materials theory have been both fundamental and encompassing. The corpus of his work consists of over 500 papers and a textbook. His band structures for semiconductors are used worldwide by researchers in solid state physics and chemistry and by device engineers. Professor Cohen's own use of his theories has resulted in the determination of the electronic structure, optical properties, structural and vibrational properties, and superconducting properties of numerous condensed matter systems including semiconductors, metals, surfaces, interfaces, defects in solids, clusters, and novel materials such as the fullerides and nanotubes.


Book Synopsis Quantum Theory of Real Materials by : James R. Chelikowsky

Download or read book Quantum Theory of Real Materials written by James R. Chelikowsky and published by Springer Science & Business Media. This book was released on 1996-02-29 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Festschrift in honor of Professor Marvin L. Cohen This volume is a Festschrift in honor of Professor Marvin L. Cohen. The articles, contributed by leading researchers in condensed matter physics, high-light recent advances in the use of quantum theory to explain and predict properties of real materials. The invention of quantum mechanics in the 1920's provided detailed descriptions of the electronic structure of atoms. However, a similar understanding of solids has been achieved only in the past 30 years, owing to the complex electron-ion and electron electron interactions in these systems. Professor Cohen is a central figure in this achievement. His development of the pseudopotential and total energy methods provided an alternate route using computers for the exploration of solids and new materials even when they have not yet been synthesized. Professor Cohen's contributions to materials theory have been both fundamental and encompassing. The corpus of his work consists of over 500 papers and a textbook. His band structures for semiconductors are used worldwide by researchers in solid state physics and chemistry and by device engineers. Professor Cohen's own use of his theories has resulted in the determination of the electronic structure, optical properties, structural and vibrational properties, and superconducting properties of numerous condensed matter systems including semiconductors, metals, surfaces, interfaces, defects in solids, clusters, and novel materials such as the fullerides and nanotubes.


Electronic Properties of Semiconductor Interfaces

Electronic Properties of Semiconductor Interfaces

Author: Winfried Mönch

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 269

ISBN-13: 3662069458

DOWNLOAD EBOOK

Using the continuum of interface-induced gap states (IFIGS) as a unifying theme, Mönch explains the band-structure lineup at all types of semiconductor interfaces. These intrinsic IFIGS are the wave-function tails of electron states, which overlap a semiconductor band-gap exactly at the interface, so they originate from the quantum-mechanical tunnel effect. He shows that a more chemical view relates the IFIGS to the partial ionic character of the covalent interface-bonds and that the charge transfer across the interface may be modeled by generalizing Pauling?s electronegativity concept. The IFIGS-and-electronegativity theory is used to quantitatively explain the barrier heights and band offsets of well-characterized Schottky contacts and semiconductor heterostructures, respectively.


Book Synopsis Electronic Properties of Semiconductor Interfaces by : Winfried Mönch

Download or read book Electronic Properties of Semiconductor Interfaces written by Winfried Mönch and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: Using the continuum of interface-induced gap states (IFIGS) as a unifying theme, Mönch explains the band-structure lineup at all types of semiconductor interfaces. These intrinsic IFIGS are the wave-function tails of electron states, which overlap a semiconductor band-gap exactly at the interface, so they originate from the quantum-mechanical tunnel effect. He shows that a more chemical view relates the IFIGS to the partial ionic character of the covalent interface-bonds and that the charge transfer across the interface may be modeled by generalizing Pauling?s electronegativity concept. The IFIGS-and-electronegativity theory is used to quantitatively explain the barrier heights and band offsets of well-characterized Schottky contacts and semiconductor heterostructures, respectively.


Microscopic Theory of Semiconductors

Microscopic Theory of Semiconductors

Author: Stephan W. Koch

Publisher: World Scientific

Published: 1995

Total Pages: 430

ISBN-13: 9789810225117

DOWNLOAD EBOOK

The articles in this book review recent developments in the microscopic theory of optical and electronic semiconductor properties. Many advances in this active field are intimately related to the work of Hartmut Haug and his coworkers. At the occasion of Haug's 60th birthday, a number of current and/or former members of his research team review the current state-of-the-art. Topics include the quantum kinetics of electrons, phonons and photons, coherent optical effects, quantum transport, ballistic motion, microscopic semiconductor laser theory with special emphasis on microlasers, symmetry aspects of laser excited semiconductors, as well as a review of the two-dimensional Wigner crystal in a strong magnetic field. The articles present the material in sufficient detail to be understandable by advanced graduate students and researchers who have a good background in quantum mechanics.


Book Synopsis Microscopic Theory of Semiconductors by : Stephan W. Koch

Download or read book Microscopic Theory of Semiconductors written by Stephan W. Koch and published by World Scientific. This book was released on 1995 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: The articles in this book review recent developments in the microscopic theory of optical and electronic semiconductor properties. Many advances in this active field are intimately related to the work of Hartmut Haug and his coworkers. At the occasion of Haug's 60th birthday, a number of current and/or former members of his research team review the current state-of-the-art. Topics include the quantum kinetics of electrons, phonons and photons, coherent optical effects, quantum transport, ballistic motion, microscopic semiconductor laser theory with special emphasis on microlasers, symmetry aspects of laser excited semiconductors, as well as a review of the two-dimensional Wigner crystal in a strong magnetic field. The articles present the material in sufficient detail to be understandable by advanced graduate students and researchers who have a good background in quantum mechanics.