Radio Frequency Station-beam Dynamics Interaction in Circular Accelerators

Radio Frequency Station-beam Dynamics Interaction in Circular Accelerators

Author: Themistoklis Mastoridis

Publisher: Stanford University

Published: 2005

Total Pages: 216

ISBN-13:

DOWNLOAD EBOOK

The longitudinal beam dynamics in circular accelerators is mainly defined by the interaction of the beam current with the accelerating Radio Frequency (RF) stations. For stable operation, Low Level RF (LLRF) feedback systems are employed to reduce coherent instabilities and regulate the accelerating voltage. The LLRF system design has implications for the dynamics and stability of the closed-loop RF systems as well as for the particle beam, and is very sensitive to the operating range of accelerator currents and energies. Stability of the RF loop and the beam are necessary conditions for reliable machine operation. This dissertation describes theoretical formalisms and models that determine the longitudinal beam dynamics based on the LLRF implementation, time domain simulations that capture the dynamic behavior of the RF station-beam interaction, and measurements from the Positron-Electron Project (PEP-II) and the Large Hadron Collider (LHC) that validate the models and simulations. These models and simulations are structured to capture the technical characteristics of the system (noise contributions, non-linear elements, and more). As such, they provide useful results and insight for the development and design of future LLRF feedback systems. They also provide the opportunity to study diverse longitudinal beam dynamics effects such as coupled-bunch impedance driven instabilities and single bunch longitudinal emittance growth. Coupled-bunch instabilities and RF station power were the performance limiting effects for PEP-II. The sensitivity of the instabilities to individual LLRF parameters, the effectiveness of alternative operational algorithms, and the possible tradeoffs between RF loop and beam stability were studied. New algorithms were implemented, with significant performance improvement leading to a world record current during the last PEP-II run of 3212 mA for the Low Energy Ring. Longitudinal beam emittance growth due to RF noise is a major concern for LHC. Simulations studies and measurements were conducted that clearly show the correlation between RF noise and longitudinal bunch emittance, identify the major LLRF noise contributions, and determine the RF component dominating this effect. With these results, LHC upgrades and alternative algorithms are evaluated to reduce longitudinal emittance growth during operations. The applications of this work are described with regard to future machines and analysis of new technical implementations, as well as to possible future work which would continue the directions of this dissertation.


Book Synopsis Radio Frequency Station-beam Dynamics Interaction in Circular Accelerators by : Themistoklis Mastoridis

Download or read book Radio Frequency Station-beam Dynamics Interaction in Circular Accelerators written by Themistoklis Mastoridis and published by Stanford University. This book was released on 2005 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: The longitudinal beam dynamics in circular accelerators is mainly defined by the interaction of the beam current with the accelerating Radio Frequency (RF) stations. For stable operation, Low Level RF (LLRF) feedback systems are employed to reduce coherent instabilities and regulate the accelerating voltage. The LLRF system design has implications for the dynamics and stability of the closed-loop RF systems as well as for the particle beam, and is very sensitive to the operating range of accelerator currents and energies. Stability of the RF loop and the beam are necessary conditions for reliable machine operation. This dissertation describes theoretical formalisms and models that determine the longitudinal beam dynamics based on the LLRF implementation, time domain simulations that capture the dynamic behavior of the RF station-beam interaction, and measurements from the Positron-Electron Project (PEP-II) and the Large Hadron Collider (LHC) that validate the models and simulations. These models and simulations are structured to capture the technical characteristics of the system (noise contributions, non-linear elements, and more). As such, they provide useful results and insight for the development and design of future LLRF feedback systems. They also provide the opportunity to study diverse longitudinal beam dynamics effects such as coupled-bunch impedance driven instabilities and single bunch longitudinal emittance growth. Coupled-bunch instabilities and RF station power were the performance limiting effects for PEP-II. The sensitivity of the instabilities to individual LLRF parameters, the effectiveness of alternative operational algorithms, and the possible tradeoffs between RF loop and beam stability were studied. New algorithms were implemented, with significant performance improvement leading to a world record current during the last PEP-II run of 3212 mA for the Low Energy Ring. Longitudinal beam emittance growth due to RF noise is a major concern for LHC. Simulations studies and measurements were conducted that clearly show the correlation between RF noise and longitudinal bunch emittance, identify the major LLRF noise contributions, and determine the RF component dominating this effect. With these results, LHC upgrades and alternative algorithms are evaluated to reduce longitudinal emittance growth during operations. The applications of this work are described with regard to future machines and analysis of new technical implementations, as well as to possible future work which would continue the directions of this dissertation.


Accelerator Physics

Accelerator Physics

Author: S Y Lee

Publisher: World Scientific Publishing Company

Published: 2011-11-16

Total Pages: 554

ISBN-13: 9814405280

DOWNLOAD EBOOK

Research and development of high energy accelerators began in 1911. Since then, milestones achieved are: (1) development of high gradient dc and rf accelerators,(2) achievement of high field magnets with excellent field quality,(3) discovery of transverse and longitudinal beam focusing principles,(4) invention of high power rf sources,(5) improvement of ultra-high vacuum technology,(6) attainment of high brightness (polarized/unpolarized) electron/ionsources,(7) advancement of beam dynamics and beam manipulation schemes, such as beam injection, accumulation, slow and fast extraction, beam damping and beam cooling, instability feedback, laser-beam interaction and harvesting instability for high brilliance coherent photon source. The impacts of the accelerator development are evidenced by the many ground-breaking discoveries in particle and nuclear physics, atomic and molecular physics, condensed matter physics, biology, biomedical physics, nuclear medicine, medical therapy, and industrial processing. This book is intended to be used as a graduate or senior undergraduate textbook in accelerator physics and science. It can be used as preparatory course material in graduate accelerator physics thesis research. The text covers historical accelerator development, transverse betatron motion, synchrotron motion, an introduction to linear accelerators, and synchrotron radiation phenomena in low emittance electron storage rings, introduction to special topics such as the free electron laser and the beam-beam interaction. Attention is paid to derivation of the action-angle variables of the phase space, because the transformation is important for understanding advanced topics such as the collective instability and nonlinear beam dynamics. Each section is followed by exercises, which are designed to reinforce concepts and to solve realistic accelerator design problems. Contents:Introduction:Historical DevelopmentsLayout and Components of AcceleratorsAccelerator ApplicationsTransverse Motion:Hamiltonian for Particle Motion in AcceleratorsLinear Betatron MotionEffect of Linear Magnet ImperfectionsOff-Momentum OrbitChromatic AberrationLinear CouplingNonlinear ResonancesCollective Instability and Landau DampingSynchro-Betatron HamiltonianSynchrotron Motion:Longitudinal Equation of MotionAdiabatic Synchrotron MotionRF Phase and Voltage ModulationsNonadiabatic and Nonlinear Synchrotron MotionBeam Manipulation in Synchrotron Phase SpaceFundamentals of RF SystemsLongitudinal Collective InstabilitiesIntroduction to Linear AcceleratorsPhysics of Electron Storage Rings:Fields of a Moving Charged ParticleRadiation Damping and ExcitationEmittance in Electron Storage RingsSpecial Topics in Beam Physics:Free Electron Laser (FEL)Beam-Beam InteractionClassical Mechanics and Analysis:Hamiltonian DynamicsStochastic Beam DynamicsModel Independent AnalysisNumerical Methods and Physical Constants:Fourier TransformCauchy Theorem and the Dispersion RelationUseful Handy FormulasMaxwell's EquationsPhysical Properties and Constants Readership: Accelerator, high-energy, nuclear, plasma and applied physicists.


Book Synopsis Accelerator Physics by : S Y Lee

Download or read book Accelerator Physics written by S Y Lee and published by World Scientific Publishing Company. This book was released on 2011-11-16 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research and development of high energy accelerators began in 1911. Since then, milestones achieved are: (1) development of high gradient dc and rf accelerators,(2) achievement of high field magnets with excellent field quality,(3) discovery of transverse and longitudinal beam focusing principles,(4) invention of high power rf sources,(5) improvement of ultra-high vacuum technology,(6) attainment of high brightness (polarized/unpolarized) electron/ionsources,(7) advancement of beam dynamics and beam manipulation schemes, such as beam injection, accumulation, slow and fast extraction, beam damping and beam cooling, instability feedback, laser-beam interaction and harvesting instability for high brilliance coherent photon source. The impacts of the accelerator development are evidenced by the many ground-breaking discoveries in particle and nuclear physics, atomic and molecular physics, condensed matter physics, biology, biomedical physics, nuclear medicine, medical therapy, and industrial processing. This book is intended to be used as a graduate or senior undergraduate textbook in accelerator physics and science. It can be used as preparatory course material in graduate accelerator physics thesis research. The text covers historical accelerator development, transverse betatron motion, synchrotron motion, an introduction to linear accelerators, and synchrotron radiation phenomena in low emittance electron storage rings, introduction to special topics such as the free electron laser and the beam-beam interaction. Attention is paid to derivation of the action-angle variables of the phase space, because the transformation is important for understanding advanced topics such as the collective instability and nonlinear beam dynamics. Each section is followed by exercises, which are designed to reinforce concepts and to solve realistic accelerator design problems. Contents:Introduction:Historical DevelopmentsLayout and Components of AcceleratorsAccelerator ApplicationsTransverse Motion:Hamiltonian for Particle Motion in AcceleratorsLinear Betatron MotionEffect of Linear Magnet ImperfectionsOff-Momentum OrbitChromatic AberrationLinear CouplingNonlinear ResonancesCollective Instability and Landau DampingSynchro-Betatron HamiltonianSynchrotron Motion:Longitudinal Equation of MotionAdiabatic Synchrotron MotionRF Phase and Voltage ModulationsNonadiabatic and Nonlinear Synchrotron MotionBeam Manipulation in Synchrotron Phase SpaceFundamentals of RF SystemsLongitudinal Collective InstabilitiesIntroduction to Linear AcceleratorsPhysics of Electron Storage Rings:Fields of a Moving Charged ParticleRadiation Damping and ExcitationEmittance in Electron Storage RingsSpecial Topics in Beam Physics:Free Electron Laser (FEL)Beam-Beam InteractionClassical Mechanics and Analysis:Hamiltonian DynamicsStochastic Beam DynamicsModel Independent AnalysisNumerical Methods and Physical Constants:Fourier TransformCauchy Theorem and the Dispersion RelationUseful Handy FormulasMaxwell's EquationsPhysical Properties and Constants Readership: Accelerator, high-energy, nuclear, plasma and applied physicists.


Accelerator Physics

Accelerator Physics

Author: Shyh-Yuan Lee

Publisher: World Scientific

Published: 2004

Total Pages: 596

ISBN-13: 981256182X

DOWNLOAD EBOOK

The development of high energy accelerators began in 1911, when Rutherford discovered the atomic nuclei inside the atom. Since then, progress has been made in the following: (1) development of high voltage dc and rf accelerators, (2) achievement of high field magnets with excellent field quality, (3) discovery of transverse and longitudinal beam focusing principles, (4) invention of high power rf sources, (5) improvement of high vacuum technology, (6) attainment of high brightness (polarized/unpolarized) electron/ion sources, (7) advancement of beam dynamics and beam manipulation schemes, such as beam injection, accumulation, slow and fast extraction, beam damping and beam cooling, instability feedback, etc.The impacts of the accelerator development are evidenced by the many ground-breaking discoveries in particle and nuclear physics, atomic and molecular physics, condensed matter physics, biomedical physics, medicine, biology, and industrial processing.This book is intended to be used as a graduate or senior undergraduate textbook in accelerator physics and science. It can be used as preparatory course material for graduate accelerator physics students doing thesis research. The text covers historical accelerator development, transverse betatron motion, synchrotron motion, an introduction to linear accelerators, and synchrotron radiation phenomena in low emittance electron storage rings, introduction to special topics such as the free electron laser and the beam-beam interaction. Attention is paid to derivation of the action-angle variables of the phase space, because the transformation is important for understanding advanced topics such as the collective instability and nonlinear beam dynamics. Each section is followed by exercises, which are designed to reinforce the concept discussed and to solve a realistic accelerator design problem.


Book Synopsis Accelerator Physics by : Shyh-Yuan Lee

Download or read book Accelerator Physics written by Shyh-Yuan Lee and published by World Scientific. This book was released on 2004 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: The development of high energy accelerators began in 1911, when Rutherford discovered the atomic nuclei inside the atom. Since then, progress has been made in the following: (1) development of high voltage dc and rf accelerators, (2) achievement of high field magnets with excellent field quality, (3) discovery of transverse and longitudinal beam focusing principles, (4) invention of high power rf sources, (5) improvement of high vacuum technology, (6) attainment of high brightness (polarized/unpolarized) electron/ion sources, (7) advancement of beam dynamics and beam manipulation schemes, such as beam injection, accumulation, slow and fast extraction, beam damping and beam cooling, instability feedback, etc.The impacts of the accelerator development are evidenced by the many ground-breaking discoveries in particle and nuclear physics, atomic and molecular physics, condensed matter physics, biomedical physics, medicine, biology, and industrial processing.This book is intended to be used as a graduate or senior undergraduate textbook in accelerator physics and science. It can be used as preparatory course material for graduate accelerator physics students doing thesis research. The text covers historical accelerator development, transverse betatron motion, synchrotron motion, an introduction to linear accelerators, and synchrotron radiation phenomena in low emittance electron storage rings, introduction to special topics such as the free electron laser and the beam-beam interaction. Attention is paid to derivation of the action-angle variables of the phase space, because the transformation is important for understanding advanced topics such as the collective instability and nonlinear beam dynamics. Each section is followed by exercises, which are designed to reinforce the concept discussed and to solve a realistic accelerator design problem.


Beam Dynamics in High Energy Particle Accelerators

Beam Dynamics in High Energy Particle Accelerators

Author: Andrzej Wolski

Publisher: World Scientific

Published: 2014-01-21

Total Pages: 608

ISBN-13: 1783262796

DOWNLOAD EBOOK

Particle accelerators are essential tools for scientific research in fields as diverse as high energy physics, materials science and structural biology. They are also widely used in industry and medicine. Producing the optimum design and achieving the best performance for an accelerator depends on a detailed understanding of many (often complex and sometimes subtle) effects that determine the properties and behavior of the particle beam. Beam Dynamics in High Energy Particle Accelerators provides an introduction to the concepts underlying accelerator beam line design and analysis, taking an approach that emphasizes the elegance of the subject and leads into the development of a range of powerful techniques for understanding and modeling charged particle beams. Contents:Electromagnetism and Classical Mechanics:Electromagnetic Fields in Accelerator ComponentsHamiltonian for a Particle in an Accelerator Beam LineSingle-Particle Linear Dynamics:Linear Transfer Maps for Common ComponentsLinear Optics in Uncoupled Beam LinesCoupled OpticsLinear Imperfections in Storage RingsEffects of Synchrotron RadiationSingle-Particle Nonlinear Dynamics:Examples of Nonlinear Effects in Accelerator Beam LinesRepresentations of Transfer MapsSymplectic IntegratorsMethods for Analysis of Single-Particle DynamicsCollective Effects:Space ChargeScattering EffectsWake Fields, Wake Functions and ImpedanceCoherent Instabilities Readership: Undergraduate students who are looking for an introduction to beam dynamics, and graduate students and researchers in the field. Key Features:Basic ideas are introduced from the start using an approach that leads logically into the development of more advanced concepts and techniques. In particular, linear dynamics is treated consistently using a Hamiltonian formalism, which provides a suitable foundation not only for perturbation theory, but also for more modern techniques based on Lie operators. The use of a consistent approach makes the progress from introductory to advanced material as straightforward as possibleThe treatment of nonlinear dynamics using Lie operators provides a number of powerful techniques for the analysis of accelerator beam lines. Lie operators are generally found only in more advanced and specialized treatments of nonlinear dynamics. Beam Dynamics in High Energy Particle Accelerators provides an accessible introduction to the subject, and illustrates the use of techniques such as Lie transforms and normal form analysis through examples of particular relevance for beam dynamicsAs well as providing a clear description of the important topics in beam dynamics and an explanation of the physical principles, attention is given to techniques of particular importance for computer modeling of beam dynamics. For example, there is a chapter on symplectic integration that gives explicit formulae for methods that are of some importance in accelerator modeling codes, but have not previously been presented in a book of this kindKeywords:Accelerator Physics;Beam Dynamics;Particle AcceleratorsReviews: “This is a recommendable addition to the literature, covering its topics clearly and thoroughly.” CERN Courier


Book Synopsis Beam Dynamics in High Energy Particle Accelerators by : Andrzej Wolski

Download or read book Beam Dynamics in High Energy Particle Accelerators written by Andrzej Wolski and published by World Scientific. This book was released on 2014-01-21 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: Particle accelerators are essential tools for scientific research in fields as diverse as high energy physics, materials science and structural biology. They are also widely used in industry and medicine. Producing the optimum design and achieving the best performance for an accelerator depends on a detailed understanding of many (often complex and sometimes subtle) effects that determine the properties and behavior of the particle beam. Beam Dynamics in High Energy Particle Accelerators provides an introduction to the concepts underlying accelerator beam line design and analysis, taking an approach that emphasizes the elegance of the subject and leads into the development of a range of powerful techniques for understanding and modeling charged particle beams. Contents:Electromagnetism and Classical Mechanics:Electromagnetic Fields in Accelerator ComponentsHamiltonian for a Particle in an Accelerator Beam LineSingle-Particle Linear Dynamics:Linear Transfer Maps for Common ComponentsLinear Optics in Uncoupled Beam LinesCoupled OpticsLinear Imperfections in Storage RingsEffects of Synchrotron RadiationSingle-Particle Nonlinear Dynamics:Examples of Nonlinear Effects in Accelerator Beam LinesRepresentations of Transfer MapsSymplectic IntegratorsMethods for Analysis of Single-Particle DynamicsCollective Effects:Space ChargeScattering EffectsWake Fields, Wake Functions and ImpedanceCoherent Instabilities Readership: Undergraduate students who are looking for an introduction to beam dynamics, and graduate students and researchers in the field. Key Features:Basic ideas are introduced from the start using an approach that leads logically into the development of more advanced concepts and techniques. In particular, linear dynamics is treated consistently using a Hamiltonian formalism, which provides a suitable foundation not only for perturbation theory, but also for more modern techniques based on Lie operators. The use of a consistent approach makes the progress from introductory to advanced material as straightforward as possibleThe treatment of nonlinear dynamics using Lie operators provides a number of powerful techniques for the analysis of accelerator beam lines. Lie operators are generally found only in more advanced and specialized treatments of nonlinear dynamics. Beam Dynamics in High Energy Particle Accelerators provides an accessible introduction to the subject, and illustrates the use of techniques such as Lie transforms and normal form analysis through examples of particular relevance for beam dynamicsAs well as providing a clear description of the important topics in beam dynamics and an explanation of the physical principles, attention is given to techniques of particular importance for computer modeling of beam dynamics. For example, there is a chapter on symplectic integration that gives explicit formulae for methods that are of some importance in accelerator modeling codes, but have not previously been presented in a book of this kindKeywords:Accelerator Physics;Beam Dynamics;Particle AcceleratorsReviews: “This is a recommendable addition to the literature, covering its topics clearly and thoroughly.” CERN Courier


Accelerators and Colliders

Accelerators and Colliders

Author: Ugo Amaldi

Publisher:

Published: 2013

Total Pages: 0

ISBN-13: 9783642230530

DOWNLOAD EBOOK

After a historical consideration of the types and evolution of accelerators the physics of particle beams is provided in detail. Topics dealt with comprise linear and nonlinear beam dynamics, collective phenomena in beams, and interactions of beams with the surroundings. The design and principles of synchrotrons, circular and linear colliders, and of linear accelerators are discussed next. Also technological aspects of accelerators (magnets, RF cavities, cryogenics, power supply, vacuum, beam instrumentation, injection and extraction) are reviewed, as well as accelerator operation (parameter control, beam feedback system, orbit correction, luminosity optimization). After introducing the largest accelerators and colliders of their times the application of accelerators and storage rings in industry, medicine, basic science, and energy research is discussed, including also synchrotron radiation sources and spallation sources. Finally, cosmic accelerators and an outlook for the future are given.


Book Synopsis Accelerators and Colliders by : Ugo Amaldi

Download or read book Accelerators and Colliders written by Ugo Amaldi and published by . This book was released on 2013 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: After a historical consideration of the types and evolution of accelerators the physics of particle beams is provided in detail. Topics dealt with comprise linear and nonlinear beam dynamics, collective phenomena in beams, and interactions of beams with the surroundings. The design and principles of synchrotrons, circular and linear colliders, and of linear accelerators are discussed next. Also technological aspects of accelerators (magnets, RF cavities, cryogenics, power supply, vacuum, beam instrumentation, injection and extraction) are reviewed, as well as accelerator operation (parameter control, beam feedback system, orbit correction, luminosity optimization). After introducing the largest accelerators and colliders of their times the application of accelerators and storage rings in industry, medicine, basic science, and energy research is discussed, including also synchrotron radiation sources and spallation sources. Finally, cosmic accelerators and an outlook for the future are given.


Elementary Particles - Accelerators and Colliders

Elementary Particles - Accelerators and Colliders

Author: Ugo Amaldi

Publisher: Springer

Published: 2013-03-27

Total Pages: 0

ISBN-13: 9783642230523

DOWNLOAD EBOOK

After a historical consideration of the types and evolution of accelerators the physics of particle beams is provided in detail. Topics dealt with comprise linear and nonlinear beam dynamics, collective phenomena in beams, and interactions of beams with the surroundings. The design and principles of synchrotrons, circular and linear colliders, and of linear accelerators are discussed next. Also technological aspects of accelerators (magnets, RF cavities, cryogenics, power supply, vacuum, beam instrumentation, injection and extraction) are reviewed, as well as accelerator operation (parameter control, beam feedback system, orbit correction, luminosity optimization). After introducing the largest accelerators and colliders of their times the application of accelerators and storage rings in industry, medicine, basic science, and energy research is discussed, including also synchrotron radiation sources and spallation sources. Finally, cosmic accelerators and an outlook for the future are given.


Book Synopsis Elementary Particles - Accelerators and Colliders by : Ugo Amaldi

Download or read book Elementary Particles - Accelerators and Colliders written by Ugo Amaldi and published by Springer. This book was released on 2013-03-27 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: After a historical consideration of the types and evolution of accelerators the physics of particle beams is provided in detail. Topics dealt with comprise linear and nonlinear beam dynamics, collective phenomena in beams, and interactions of beams with the surroundings. The design and principles of synchrotrons, circular and linear colliders, and of linear accelerators are discussed next. Also technological aspects of accelerators (magnets, RF cavities, cryogenics, power supply, vacuum, beam instrumentation, injection and extraction) are reviewed, as well as accelerator operation (parameter control, beam feedback system, orbit correction, luminosity optimization). After introducing the largest accelerators and colliders of their times the application of accelerators and storage rings in industry, medicine, basic science, and energy research is discussed, including also synchrotron radiation sources and spallation sources. Finally, cosmic accelerators and an outlook for the future are given.


High Energy Physics Index

High Energy Physics Index

Author:

Publisher:

Published: 1988

Total Pages: 678

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis High Energy Physics Index by :

Download or read book High Energy Physics Index written by and published by . This book was released on 1988 with total page 678 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Proceedings

Proceedings

Author:

Publisher:

Published: 1974

Total Pages: 802

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Proceedings by :

Download or read book Proceedings written by and published by . This book was released on 1974 with total page 802 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports

Author:

Publisher:

Published: 1995

Total Pages: 704

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Scientific and Technical Aerospace Reports by :

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1995 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Particle Accelerator Physics

Particle Accelerator Physics

Author: Helmut Wiedemann

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 457

ISBN-13: 3662029030

DOWNLOAD EBOOK

Particle Accelerator Physics covers the dynamics of relativistic particle beams, basics of particle guidance and focusing, lattice design, characteristics of beam transport systems and circular accelerators. Particle-beam optics is treated in the linear approximation including sextupoles to correct for chromatic aberrations. Perturbations to linear beam dynamics are analyzed in detail and correction measures are discussed, while basic lattice design features and building blocks leading to the design of more complicated beam transport systems and circular accelerators are studied. Characteristics of synchrotron radiation and quantum effects due to the statistical emission of photons on particle trajectories are derived and applied to determine particle-beam parameters. The discussions specifically concentrate on relativistic particle beams and the physics of beam optics in beam transport systems and circular accelerators such as synchrotrons and storage rings. This book forms a broad basis for further, more detailed studies of nonlinear beam dynamics and associated accelerator physics problems, discussed in the subsequent volume.


Book Synopsis Particle Accelerator Physics by : Helmut Wiedemann

Download or read book Particle Accelerator Physics written by Helmut Wiedemann and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: Particle Accelerator Physics covers the dynamics of relativistic particle beams, basics of particle guidance and focusing, lattice design, characteristics of beam transport systems and circular accelerators. Particle-beam optics is treated in the linear approximation including sextupoles to correct for chromatic aberrations. Perturbations to linear beam dynamics are analyzed in detail and correction measures are discussed, while basic lattice design features and building blocks leading to the design of more complicated beam transport systems and circular accelerators are studied. Characteristics of synchrotron radiation and quantum effects due to the statistical emission of photons on particle trajectories are derived and applied to determine particle-beam parameters. The discussions specifically concentrate on relativistic particle beams and the physics of beam optics in beam transport systems and circular accelerators such as synchrotrons and storage rings. This book forms a broad basis for further, more detailed studies of nonlinear beam dynamics and associated accelerator physics problems, discussed in the subsequent volume.