Radio Wave Propagation Fundamentals, Second Edition

Radio Wave Propagation Fundamentals, Second Edition

Author: Artem Saakian

Publisher: Artech House

Published: 2020-12-31

Total Pages: 422

ISBN-13: 1630818453

DOWNLOAD EBOOK

This completely updated second edition of an Artech House classic provides a thorough introduction to the basic principles of electromagnetic wave propagation of radio frequencies in real-world conditions, fully updated by including new achievements in theory and technology. It serves as an invaluable daily reference for practitioners in the field and as a complete, organized text on the subject. This comprehensive resource covers a wide range of essential topics, from the classification of radio waves, electromagnetic wave theory, and antennas for RF radio links, to the impact of the earth surface on the propagation of ground waves, atmospheric affects in radio wave propagation, and radio wave reception. The book explores the propagation of the ground radio waves, namely the waves that propagate in vicinity of the earth's surface (e.g., guided by that interface), without involvement of any atmospheric effects. Specifics of the high-frequency (HF) radio propagation due to reflections from ionospheric layers is studied, based on commonly used models of the ionospheric vertical profiles. Scattering of the radio waves of UHF and higher frequency bands from the random variations of the tropospheric refraction index (from tiny air turbulences) are also considered by using the principles of statistical radio-physics. Analysis of propagation conditions on real propagation paths, including analysis of the power budget of the VHF/UHF link to assure its stability (percentage of availability within observation time frame), terrestrial, broadcast, mobile, and satellite RF links are presented. The engineering design of the cellular networks, including LTE 4G, 5G and upcoming higher generations is explored. HF propagation predictions for extremely long-range links design for commercial and military applications are explained. Packed with examples and problems, this book provides a theoretical background for astrophysical, aeronomy and geophysical instrumentation design.


Book Synopsis Radio Wave Propagation Fundamentals, Second Edition by : Artem Saakian

Download or read book Radio Wave Propagation Fundamentals, Second Edition written by Artem Saakian and published by Artech House. This book was released on 2020-12-31 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: This completely updated second edition of an Artech House classic provides a thorough introduction to the basic principles of electromagnetic wave propagation of radio frequencies in real-world conditions, fully updated by including new achievements in theory and technology. It serves as an invaluable daily reference for practitioners in the field and as a complete, organized text on the subject. This comprehensive resource covers a wide range of essential topics, from the classification of radio waves, electromagnetic wave theory, and antennas for RF radio links, to the impact of the earth surface on the propagation of ground waves, atmospheric affects in radio wave propagation, and radio wave reception. The book explores the propagation of the ground radio waves, namely the waves that propagate in vicinity of the earth's surface (e.g., guided by that interface), without involvement of any atmospheric effects. Specifics of the high-frequency (HF) radio propagation due to reflections from ionospheric layers is studied, based on commonly used models of the ionospheric vertical profiles. Scattering of the radio waves of UHF and higher frequency bands from the random variations of the tropospheric refraction index (from tiny air turbulences) are also considered by using the principles of statistical radio-physics. Analysis of propagation conditions on real propagation paths, including analysis of the power budget of the VHF/UHF link to assure its stability (percentage of availability within observation time frame), terrestrial, broadcast, mobile, and satellite RF links are presented. The engineering design of the cellular networks, including LTE 4G, 5G and upcoming higher generations is explored. HF propagation predictions for extremely long-range links design for commercial and military applications are explained. Packed with examples and problems, this book provides a theoretical background for astrophysical, aeronomy and geophysical instrumentation design.


Radio Wave Propagation Fundamentals

Radio Wave Propagation Fundamentals

Author: Artem Saakian

Publisher: Artech House Publishers

Published: 2011-06-01

Total Pages: 376

ISBN-13: 9781608071388

DOWNLOAD EBOOK

Written for professional engineers and students who specialize in antenna, communication and radar systems, this authoritative book provides a thorough introduction to the basic principles of electromagnetic wave propagation of radio frequencies in real-world conditions. It serves as an invaluable daily reference for practitioners in the field and also as a complete, organized text on the subject.This comprehensive resource covers a wide range of essential topics, from the classification of radio waves, electromagnetic wave theory, and antennas for RF radio links... to the impact of the earth surface on the propagation of ground waves, atmospheric affects in radio wave propagation, and radio wave reception. The book is packed with over 1,105 time-saving equations and key discussions are supported with more than 190 illustrations. Moreover, each chapter includes problem sets to test the readerOCOs mastery of the material.


Book Synopsis Radio Wave Propagation Fundamentals by : Artem Saakian

Download or read book Radio Wave Propagation Fundamentals written by Artem Saakian and published by Artech House Publishers. This book was released on 2011-06-01 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written for professional engineers and students who specialize in antenna, communication and radar systems, this authoritative book provides a thorough introduction to the basic principles of electromagnetic wave propagation of radio frequencies in real-world conditions. It serves as an invaluable daily reference for practitioners in the field and also as a complete, organized text on the subject.This comprehensive resource covers a wide range of essential topics, from the classification of radio waves, electromagnetic wave theory, and antennas for RF radio links... to the impact of the earth surface on the propagation of ground waves, atmospheric affects in radio wave propagation, and radio wave reception. The book is packed with over 1,105 time-saving equations and key discussions are supported with more than 190 illustrations. Moreover, each chapter includes problem sets to test the readerOCOs mastery of the material.


Radio Wave Propagation Fundamentals

Radio Wave Propagation Fundamentals

Author: Artem Saakian

Publisher: Artech House Publishers

Published: 2011

Total Pages: 362

ISBN-13: 9781608071371

DOWNLOAD EBOOK

Suitable for professional engineers and students who specialize in antenna, communication and radar systems, this book provides a thorough introduction to the basic principles of electromagnetic wave propagation of radio frequencies in real-world conditions.


Book Synopsis Radio Wave Propagation Fundamentals by : Artem Saakian

Download or read book Radio Wave Propagation Fundamentals written by Artem Saakian and published by Artech House Publishers. This book was released on 2011 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: Suitable for professional engineers and students who specialize in antenna, communication and radar systems, this book provides a thorough introduction to the basic principles of electromagnetic wave propagation of radio frequencies in real-world conditions.


Radio Wave Propagation

Radio Wave Propagation

Author: John A. Richards

Publisher: Springer Science & Business Media

Published: 2008-01-22

Total Pages: 132

ISBN-13: 3540771255

DOWNLOAD EBOOK

This work treats the essential elements of radio wave propagation without requiring recourse to advanced electromagnetic concepts and equations. However, it provides sufficient detail to allow those concerned with wireless systems to acquire quickly a practical working knowledge of the important concepts. Radio wave propagation is placed in a practical context by considering the design aspects of communications systems at microwave frequencies. A fuller consideration of the electromagnetic properties of materials is given late in the book rather than as an introductory chapter.


Book Synopsis Radio Wave Propagation by : John A. Richards

Download or read book Radio Wave Propagation written by John A. Richards and published by Springer Science & Business Media. This book was released on 2008-01-22 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work treats the essential elements of radio wave propagation without requiring recourse to advanced electromagnetic concepts and equations. However, it provides sufficient detail to allow those concerned with wireless systems to acquire quickly a practical working knowledge of the important concepts. Radio wave propagation is placed in a practical context by considering the design aspects of communications systems at microwave frequencies. A fuller consideration of the electromagnetic properties of materials is given late in the book rather than as an introductory chapter.


Radio Wave Propagation Fundamentals

Radio Wave Propagation Fundamentals

Author:

Publisher:

Published: 2018-05

Total Pages: 371

ISBN-13: 9781642241631

DOWNLOAD EBOOK

Radio propagation is the behavior of radio waves as they travel, or are propagated, from one medium to another, or into different parts of the atmosphere. Radio waves are subject to the influence of the environment in which they are propagated. When a radio wave leaves the boundary of one medium and enters another, the wave changes direction. Radio propagation environments may introduce multipath effects causing fading and channel time dispersion. Various propagation environments have different path loss and multipath effects, leading to the impossibility of radio wave propagation prediction in different propagation environment with the utilization of the same propagation channel model. Understanding the effects of changeable conditions on radio propagation has many practical applications, from selecting frequencies for global shortwave broadcasters, to designing reliable mobile telephone systems, to radio navigation, to operation of radar systems. Radio wave propagation scene portioning plays a very important role in wireless channel modeling. Scene partitioning is also the basis for the upper layer communication network design. Optimization with respect to radio wave propagation will greatly improve the planning of wireless networks for rails. Special railway structures such as cuttings, viaducts, and tunnels have a significant impact on propagation characteristics. Radio Wave Propagation Fundamentals is dedicated to present state of the art reviews and research results delivering information of basic principles commonly used in radio waves propagation. This includes a detailed discussion of different propagation phenomena, including reflection, refraction, scattering, diffraction, ducting and frequency dispersion in different media. Among various subjects, radiowave equations and polarization, transmission media characteristics and its phenomena, K-factor and Earth equivalent radius, and free space and basic transmission losses are included. To understand these topics, good knowledge of fields and waves theory, electromagnetic engineering, antenna theory, and statistics and applied mathematics is required. Also, to get more familiar with the basic principles of radio waves propagation, some examples are presented. This book is valuable for practitioners and students who specialize in antenna, communication and radar systems, providing complete information to the basic principles of electromagnetic wave propagation of radio frequencies in real-world conditions.


Book Synopsis Radio Wave Propagation Fundamentals by :

Download or read book Radio Wave Propagation Fundamentals written by and published by . This book was released on 2018-05 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: Radio propagation is the behavior of radio waves as they travel, or are propagated, from one medium to another, or into different parts of the atmosphere. Radio waves are subject to the influence of the environment in which they are propagated. When a radio wave leaves the boundary of one medium and enters another, the wave changes direction. Radio propagation environments may introduce multipath effects causing fading and channel time dispersion. Various propagation environments have different path loss and multipath effects, leading to the impossibility of radio wave propagation prediction in different propagation environment with the utilization of the same propagation channel model. Understanding the effects of changeable conditions on radio propagation has many practical applications, from selecting frequencies for global shortwave broadcasters, to designing reliable mobile telephone systems, to radio navigation, to operation of radar systems. Radio wave propagation scene portioning plays a very important role in wireless channel modeling. Scene partitioning is also the basis for the upper layer communication network design. Optimization with respect to radio wave propagation will greatly improve the planning of wireless networks for rails. Special railway structures such as cuttings, viaducts, and tunnels have a significant impact on propagation characteristics. Radio Wave Propagation Fundamentals is dedicated to present state of the art reviews and research results delivering information of basic principles commonly used in radio waves propagation. This includes a detailed discussion of different propagation phenomena, including reflection, refraction, scattering, diffraction, ducting and frequency dispersion in different media. Among various subjects, radiowave equations and polarization, transmission media characteristics and its phenomena, K-factor and Earth equivalent radius, and free space and basic transmission losses are included. To understand these topics, good knowledge of fields and waves theory, electromagnetic engineering, antenna theory, and statistics and applied mathematics is required. Also, to get more familiar with the basic principles of radio waves propagation, some examples are presented. This book is valuable for practitioners and students who specialize in antenna, communication and radar systems, providing complete information to the basic principles of electromagnetic wave propagation of radio frequencies in real-world conditions.


Radio Wave Propagation and Parabolic Equation Modeling

Radio Wave Propagation and Parabolic Equation Modeling

Author: Gokhan Apaydin

Publisher: John Wiley & Sons

Published: 2017-10-16

Total Pages: 167

ISBN-13: 1119432111

DOWNLOAD EBOOK

An important contribution to the literature that introduces powerful new methods for modeling and simulating radio wave propagation A thorough understanding of electromagnetic wave propagation is fundamental to the development of sophisticated communication and detection technologies. The powerful numerical methods described in this book represent a major step forward in our ability to accurately model electromagnetic wave propagation in order to establish and maintain reliable communication links, to detect targets in radar systems, and to maintain robust mobile phone and broadcasting networks. The first new book on guided wave propagation modeling and simulation to appear in nearly two decades, Radio Wave Propagation and Parabolic Equation Modeling addresses the fundamentals of electromagnetic wave propagation generally, with a specific focus on radio wave propagation through various media. The authors explore an array of new applications, and detail various virtual electromagnetic tools for solving several frequent electromagnetic propagation problems. All of the methods described are presented within the context of real-world scenarios typifying the differing effects of various environments on radio-wave propagation. This valuable text: Addresses groundwave and surface wave propagation Explains radar applications in terms of parabolic equation modeling and simulation approaches Introduces several simple and sophisticated MATLAB scripts Teaches applications that work with a wide range of electromagnetic, acoustic and optical wave propagation modeling Presents the material in a quick-reference format ideal for busy researchers and engineers Radio Wave Propagation and Parabolic Equation Modeling is a critical resource forelectrical, electronics, communication, and computer engineers working on industrial and military applications that rely on the directed propagation of radio waves. It is also a useful reference for advanced engineering students and academic researchers.


Book Synopsis Radio Wave Propagation and Parabolic Equation Modeling by : Gokhan Apaydin

Download or read book Radio Wave Propagation and Parabolic Equation Modeling written by Gokhan Apaydin and published by John Wiley & Sons. This book was released on 2017-10-16 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: An important contribution to the literature that introduces powerful new methods for modeling and simulating radio wave propagation A thorough understanding of electromagnetic wave propagation is fundamental to the development of sophisticated communication and detection technologies. The powerful numerical methods described in this book represent a major step forward in our ability to accurately model electromagnetic wave propagation in order to establish and maintain reliable communication links, to detect targets in radar systems, and to maintain robust mobile phone and broadcasting networks. The first new book on guided wave propagation modeling and simulation to appear in nearly two decades, Radio Wave Propagation and Parabolic Equation Modeling addresses the fundamentals of electromagnetic wave propagation generally, with a specific focus on radio wave propagation through various media. The authors explore an array of new applications, and detail various virtual electromagnetic tools for solving several frequent electromagnetic propagation problems. All of the methods described are presented within the context of real-world scenarios typifying the differing effects of various environments on radio-wave propagation. This valuable text: Addresses groundwave and surface wave propagation Explains radar applications in terms of parabolic equation modeling and simulation approaches Introduces several simple and sophisticated MATLAB scripts Teaches applications that work with a wide range of electromagnetic, acoustic and optical wave propagation modeling Presents the material in a quick-reference format ideal for busy researchers and engineers Radio Wave Propagation and Parabolic Equation Modeling is a critical resource forelectrical, electronics, communication, and computer engineers working on industrial and military applications that rely on the directed propagation of radio waves. It is also a useful reference for advanced engineering students and academic researchers.


Electromagnetic Wave Propagation, Radiation, and Scattering

Electromagnetic Wave Propagation, Radiation, and Scattering

Author: Akira Ishimaru

Publisher: John Wiley & Sons

Published: 2017-08-09

Total Pages: 968

ISBN-13: 1119079535

DOWNLOAD EBOOK

One of the most methodical treatments of electromagnetic wave propagation, radiation, and scattering—including new applications and ideas Presented in two parts, this book takes an analytical approach on the subject and emphasizes new ideas and applications used today. Part one covers fundamentals of electromagnetic wave propagation, radiation, and scattering. It provides ample end-of-chapter problems and offers a 90-page solution manual to help readers check and comprehend their work. The second part of the book explores up-to-date applications of electromagnetic waves—including radiometry, geophysical remote sensing and imaging, and biomedical and signal processing applications. Written by a world renowned authority in the field of electromagnetic research, this new edition of Electromagnetic Wave Propagation, Radiation, and Scattering: From Fundamentals to Applications presents detailed applications with useful appendices, including mathematical formulas, Airy function, Abel’s equation, Hilbert transform, and Riemann surfaces. The book also features newly revised material that focuses on the following topics: Statistical wave theories—which have been extensively applied to topics such as geophysical remote sensing, bio-electromagnetics, bio-optics, and bio-ultrasound imaging Integration of several distinct yet related disciplines, such as statistical wave theories, communications, signal processing, and time reversal imaging New phenomena of multiple scattering, such as coherent scattering and memory effects Multiphysics applications that combine theories for different physical phenomena, such as seismic coda waves, stochastic wave theory, heat diffusion, and temperature rise in biological and other media Metamaterials and solitons in optical fibers, nonlinear phenomena, and porous media Primarily a textbook for graduate courses in electrical engineering, Electromagnetic Wave Propagation, Radiation, and Scattering is also ideal for graduate students in bioengineering, geophysics, ocean engineering, and geophysical remote sensing. The book is also a useful reference for engineers and scientists working in fields such as geophysical remote sensing, bio–medical engineering in optics and ultrasound, and new materials and integration with signal processing.


Book Synopsis Electromagnetic Wave Propagation, Radiation, and Scattering by : Akira Ishimaru

Download or read book Electromagnetic Wave Propagation, Radiation, and Scattering written by Akira Ishimaru and published by John Wiley & Sons. This book was released on 2017-08-09 with total page 968 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the most methodical treatments of electromagnetic wave propagation, radiation, and scattering—including new applications and ideas Presented in two parts, this book takes an analytical approach on the subject and emphasizes new ideas and applications used today. Part one covers fundamentals of electromagnetic wave propagation, radiation, and scattering. It provides ample end-of-chapter problems and offers a 90-page solution manual to help readers check and comprehend their work. The second part of the book explores up-to-date applications of electromagnetic waves—including radiometry, geophysical remote sensing and imaging, and biomedical and signal processing applications. Written by a world renowned authority in the field of electromagnetic research, this new edition of Electromagnetic Wave Propagation, Radiation, and Scattering: From Fundamentals to Applications presents detailed applications with useful appendices, including mathematical formulas, Airy function, Abel’s equation, Hilbert transform, and Riemann surfaces. The book also features newly revised material that focuses on the following topics: Statistical wave theories—which have been extensively applied to topics such as geophysical remote sensing, bio-electromagnetics, bio-optics, and bio-ultrasound imaging Integration of several distinct yet related disciplines, such as statistical wave theories, communications, signal processing, and time reversal imaging New phenomena of multiple scattering, such as coherent scattering and memory effects Multiphysics applications that combine theories for different physical phenomena, such as seismic coda waves, stochastic wave theory, heat diffusion, and temperature rise in biological and other media Metamaterials and solitons in optical fibers, nonlinear phenomena, and porous media Primarily a textbook for graduate courses in electrical engineering, Electromagnetic Wave Propagation, Radiation, and Scattering is also ideal for graduate students in bioengineering, geophysics, ocean engineering, and geophysical remote sensing. The book is also a useful reference for engineers and scientists working in fields such as geophysical remote sensing, bio–medical engineering in optics and ultrasound, and new materials and integration with signal processing.


Analysis and Modeling of Radio Wave Propagation

Analysis and Modeling of Radio Wave Propagation

Author: Christopher John Coleman

Publisher: Cambridge University Press

Published: 2017-01-05

Total Pages: 492

ISBN-13: 131681307X

DOWNLOAD EBOOK

This comprehensive guide helps readers understand the theory and techniques needed to analyze and model radio wave propagation in complex environments. All of the essential topics are covered, from the fundamental concepts of radio systems, to complex propagation phenomena. These topics include diffraction, ray tracing, scattering, atmospheric ducting, ionospheric ducting, scintillation, and propagation through both urban and non-urban environments. Emphasis is placed on practical procedures, with detailed discussion of numerical and mathematical methods providing readers with the necessary skills to build their own propagation models and develop their own techniques. MATLAB functions illustrating key modeling ideas are provided online. This is an invaluable resource for anyone wanting to use propagation models to understand the performance of radio systems for navigation, radar, communications, or broadcasting.


Book Synopsis Analysis and Modeling of Radio Wave Propagation by : Christopher John Coleman

Download or read book Analysis and Modeling of Radio Wave Propagation written by Christopher John Coleman and published by Cambridge University Press. This book was released on 2017-01-05 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive guide helps readers understand the theory and techniques needed to analyze and model radio wave propagation in complex environments. All of the essential topics are covered, from the fundamental concepts of radio systems, to complex propagation phenomena. These topics include diffraction, ray tracing, scattering, atmospheric ducting, ionospheric ducting, scintillation, and propagation through both urban and non-urban environments. Emphasis is placed on practical procedures, with detailed discussion of numerical and mathematical methods providing readers with the necessary skills to build their own propagation models and develop their own techniques. MATLAB functions illustrating key modeling ideas are provided online. This is an invaluable resource for anyone wanting to use propagation models to understand the performance of radio systems for navigation, radar, communications, or broadcasting.


Introduction to RF Propagation

Introduction to RF Propagation

Author: John S. Seybold

Publisher: John Wiley & Sons

Published: 2005-10-03

Total Pages: 348

ISBN-13: 0471743682

DOWNLOAD EBOOK

An introduction to RF propagation that spans all wireless applications This book provides readers with a solid understanding of the concepts involved in the propagation of electromagnetic waves and of the commonly used modeling techniques. While many books cover RF propagation, most are geared to cellular telephone systems and, therefore, are limited in scope. This title is comprehensive-it treats the growing number of wireless applications that range well beyond the mobile telecommunications industry, including radar and satellite communications. The author's straightforward, clear style makes it easy for readers to gain the necessary background in electromagnetics, communication theory, and probability, so they can advance to propagation models for near-earth, indoor, and earth-space propagation. Critical topics that readers would otherwise have to search a number of resources to find are included: * RF safety chapter provides a concise presentation of FCC recommendations, including application examples, and prepares readers to work with real-world propagating systems * Antenna chapter provides an introduction to a wide variety of antennas and techniques for antenna analysis, including a detailed treatment of antenna polarization and axial ratio; the chapter contains a set of curves that permit readers to estimate polarization loss due to axial ratio mismatch between transmitting and receiving antennas without performing detailed calculations * Atmospheric effects chapter provides curves of typical atmospheric loss, so that expected loss can be determined easily * Rain attenuation chapter features a summary of how to apply the ITU and Crane rain models * Satellite communication chapter provides the details of earth-space propagation analysis including rain attenuation, atmospheric absorption, path length determination and noise temperature determination Examples of widely used models provide all the details and information needed to allow readers to apply the models with confidence. References, provided throughout the book, enable readers to explore particular topics in greater depth. Additionally, an accompanying Wiley ftp site provides supporting MathCad files for select figures in the book. With its emphasis on fundamentals, detailed examples, and comprehensive coverage of models and applications, this is an excellent text for upper-level undergraduate or graduate students, or for the practicing engineer who needs to develop an understanding of propagation phenomena.


Book Synopsis Introduction to RF Propagation by : John S. Seybold

Download or read book Introduction to RF Propagation written by John S. Seybold and published by John Wiley & Sons. This book was released on 2005-10-03 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to RF propagation that spans all wireless applications This book provides readers with a solid understanding of the concepts involved in the propagation of electromagnetic waves and of the commonly used modeling techniques. While many books cover RF propagation, most are geared to cellular telephone systems and, therefore, are limited in scope. This title is comprehensive-it treats the growing number of wireless applications that range well beyond the mobile telecommunications industry, including radar and satellite communications. The author's straightforward, clear style makes it easy for readers to gain the necessary background in electromagnetics, communication theory, and probability, so they can advance to propagation models for near-earth, indoor, and earth-space propagation. Critical topics that readers would otherwise have to search a number of resources to find are included: * RF safety chapter provides a concise presentation of FCC recommendations, including application examples, and prepares readers to work with real-world propagating systems * Antenna chapter provides an introduction to a wide variety of antennas and techniques for antenna analysis, including a detailed treatment of antenna polarization and axial ratio; the chapter contains a set of curves that permit readers to estimate polarization loss due to axial ratio mismatch between transmitting and receiving antennas without performing detailed calculations * Atmospheric effects chapter provides curves of typical atmospheric loss, so that expected loss can be determined easily * Rain attenuation chapter features a summary of how to apply the ITU and Crane rain models * Satellite communication chapter provides the details of earth-space propagation analysis including rain attenuation, atmospheric absorption, path length determination and noise temperature determination Examples of widely used models provide all the details and information needed to allow readers to apply the models with confidence. References, provided throughout the book, enable readers to explore particular topics in greater depth. Additionally, an accompanying Wiley ftp site provides supporting MathCad files for select figures in the book. With its emphasis on fundamentals, detailed examples, and comprehensive coverage of models and applications, this is an excellent text for upper-level undergraduate or graduate students, or for the practicing engineer who needs to develop an understanding of propagation phenomena.


Radiowave Propagation

Radiowave Propagation

Author: Curt Levis

Publisher: John Wiley & Sons

Published: 2010-06-01

Total Pages: 316

ISBN-13: 0470542950

DOWNLOAD EBOOK

An accessible student-oriented approach to radiowave propagation Propagation-the process whereby a signal is conveyed between transmitter and receiver-has a profound influence on communication systems design. Radiowave Propagation provides an overview of the physical mechanisms that govern electromagnetic wave propagation in the Earth's troposphere and ionosphere. Developed in conjunction with a graduate-level wave propagation course at The Ohio State University, this text offers a balance of physical and empirical models to provide basic physical insight as well as practical methods for system design. Beginning with discussions of propagation media properties, plane waves, and antenna and system concepts, successive chapters consider the most important wave propagation mechanisms for frequencies ranging from LF up to the millimeter wave range, including: Direct line-of-sight propagation through the atmosphere Rain attenuation The basic theory of reflection and refraction at material interfaces and in the Earth's atmosphere Reflection, refraction, and diffraction analysis in microwave link design for a specified terrain profile Empirical path loss models for point-to-point ground links Statistical fading models Standard techniques for prediction of ground wave propagation Ionospheric propagation, with emphasis on the skywave mechanism at MF and HF and on ionospheric perturbations for Earth-space links at VHF and higher frequencies A survey of other propagation mechanisms, including tropospheric scatter, meteor scatter, and propagation effects on GPS systems Radiowave Propagation incorporates fundamental materials to help senior undergraduate and graduate engineering students review and strengthen electromagnetic physics skills as well as the most current empirical methods recommended by the International Telecommunication Union. This book can also serve as a valuable teaching and reference text for engineers working with wireless communication, radar, or remote sensing systems.


Book Synopsis Radiowave Propagation by : Curt Levis

Download or read book Radiowave Propagation written by Curt Levis and published by John Wiley & Sons. This book was released on 2010-06-01 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible student-oriented approach to radiowave propagation Propagation-the process whereby a signal is conveyed between transmitter and receiver-has a profound influence on communication systems design. Radiowave Propagation provides an overview of the physical mechanisms that govern electromagnetic wave propagation in the Earth's troposphere and ionosphere. Developed in conjunction with a graduate-level wave propagation course at The Ohio State University, this text offers a balance of physical and empirical models to provide basic physical insight as well as practical methods for system design. Beginning with discussions of propagation media properties, plane waves, and antenna and system concepts, successive chapters consider the most important wave propagation mechanisms for frequencies ranging from LF up to the millimeter wave range, including: Direct line-of-sight propagation through the atmosphere Rain attenuation The basic theory of reflection and refraction at material interfaces and in the Earth's atmosphere Reflection, refraction, and diffraction analysis in microwave link design for a specified terrain profile Empirical path loss models for point-to-point ground links Statistical fading models Standard techniques for prediction of ground wave propagation Ionospheric propagation, with emphasis on the skywave mechanism at MF and HF and on ionospheric perturbations for Earth-space links at VHF and higher frequencies A survey of other propagation mechanisms, including tropospheric scatter, meteor scatter, and propagation effects on GPS systems Radiowave Propagation incorporates fundamental materials to help senior undergraduate and graduate engineering students review and strengthen electromagnetic physics skills as well as the most current empirical methods recommended by the International Telecommunication Union. This book can also serve as a valuable teaching and reference text for engineers working with wireless communication, radar, or remote sensing systems.