Reinforced Concrete Structural Reliability

Reinforced Concrete Structural Reliability

Author: Ph.D, Mohamed Abdallah El-Reedy

Publisher: CRC Press

Published: 2012-12-15

Total Pages: 376

ISBN-13: 1439874174

DOWNLOAD EBOOK

Structural engineers must focus on a structure's continued safety throughout its service life. Reinforced Concrete Structural Reliability covers the methods that enable engineers to keep structures reliable during all project phases, and presents a practical exploration of up-to-date techniques for predicting the lifetime of a structure. The book a


Book Synopsis Reinforced Concrete Structural Reliability by : Ph.D, Mohamed Abdallah El-Reedy

Download or read book Reinforced Concrete Structural Reliability written by Ph.D, Mohamed Abdallah El-Reedy and published by CRC Press. This book was released on 2012-12-15 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Structural engineers must focus on a structure's continued safety throughout its service life. Reinforced Concrete Structural Reliability covers the methods that enable engineers to keep structures reliable during all project phases, and presents a practical exploration of up-to-date techniques for predicting the lifetime of a structure. The book a


Non-Destructive Assessment of Concrete Structures: Reliability and Limits of Single and Combined Techniques

Non-Destructive Assessment of Concrete Structures: Reliability and Limits of Single and Combined Techniques

Author: Denys Breysse

Publisher: Springer Science & Business Media

Published: 2012-01-20

Total Pages: 389

ISBN-13: 9400727356

DOWNLOAD EBOOK

This book gives information on non destructive techniques for assessment of concrete structures. It synthesizes the best of international knowledge about what techniques can be used for assessing material properties (strength) and structural properties (geometry, defects...). It describes how the techniques can be used so as to answer a series of usual questions, highlighting their capabilities and limits, and providing advices for a better use of techniques. It also focuses on possible combinations of techniques so as to improve the assessment. It is based on many illustrative examples and give in each case references to standards and guidelines.


Book Synopsis Non-Destructive Assessment of Concrete Structures: Reliability and Limits of Single and Combined Techniques by : Denys Breysse

Download or read book Non-Destructive Assessment of Concrete Structures: Reliability and Limits of Single and Combined Techniques written by Denys Breysse and published by Springer Science & Business Media. This book was released on 2012-01-20 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives information on non destructive techniques for assessment of concrete structures. It synthesizes the best of international knowledge about what techniques can be used for assessing material properties (strength) and structural properties (geometry, defects...). It describes how the techniques can be used so as to answer a series of usual questions, highlighting their capabilities and limits, and providing advices for a better use of techniques. It also focuses on possible combinations of techniques so as to improve the assessment. It is based on many illustrative examples and give in each case references to standards and guidelines.


Reinforced Concrete Structural Reliability

Reinforced Concrete Structural Reliability

Author: Mohamed Abdallah El-Reedy, Ph.D

Publisher: CRC Press

Published: 2012-12-15

Total Pages: 379

ISBN-13: 1439872031

DOWNLOAD EBOOK

Structural engineers must focus on a structure’s continued safety throughout its service life. Reinforced Concrete Structural Reliability covers the methods that enable engineers to keep structures reliable during all project phases, and presents a practical exploration of up-to-date techniques for predicting the lifetime of a structure. The book also helps readers understand where the safety factors used come from and addresses the problems that arise from deviation from these factors. It also examines the question of what code is best to follow for a specific project: the American code, the British Standard, the Eurocode, or other local codes. The author devotes an entire chapter to practical statistics methods and probability theory used in structural and civil engineering, both important for calculating the probability of structural failure (reliability analysis). The text addresses the effects of time, environmental conditions, and loads to assess consequences on older structures as well as to calculate the probability of failure. It also presents the effects of steel bar corrosion and column corrosion, and precautions to consider along with guides for design. This book offers guidelines and tools to evaluate existing as well as new structures, providing all available methods and tests for assessing structures, including visual inspection and nondestructive testing for concrete strength. It also presents techniques for predicting the remaining service life of a structure, which can be used to determine whether to perform repairs or take other action. This practical guide helps readers to differentiate between and understand the philosophy of the various codes and standards, enabling them to work anywhere in the world. It will aid engineers at all levels working on projects from the design to the maintenance phase, increasing their grasp of structure behavior, codes and factors, and predicting service life.


Book Synopsis Reinforced Concrete Structural Reliability by : Mohamed Abdallah El-Reedy, Ph.D

Download or read book Reinforced Concrete Structural Reliability written by Mohamed Abdallah El-Reedy, Ph.D and published by CRC Press. This book was released on 2012-12-15 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: Structural engineers must focus on a structure’s continued safety throughout its service life. Reinforced Concrete Structural Reliability covers the methods that enable engineers to keep structures reliable during all project phases, and presents a practical exploration of up-to-date techniques for predicting the lifetime of a structure. The book also helps readers understand where the safety factors used come from and addresses the problems that arise from deviation from these factors. It also examines the question of what code is best to follow for a specific project: the American code, the British Standard, the Eurocode, or other local codes. The author devotes an entire chapter to practical statistics methods and probability theory used in structural and civil engineering, both important for calculating the probability of structural failure (reliability analysis). The text addresses the effects of time, environmental conditions, and loads to assess consequences on older structures as well as to calculate the probability of failure. It also presents the effects of steel bar corrosion and column corrosion, and precautions to consider along with guides for design. This book offers guidelines and tools to evaluate existing as well as new structures, providing all available methods and tests for assessing structures, including visual inspection and nondestructive testing for concrete strength. It also presents techniques for predicting the remaining service life of a structure, which can be used to determine whether to perform repairs or take other action. This practical guide helps readers to differentiate between and understand the philosophy of the various codes and standards, enabling them to work anywhere in the world. It will aid engineers at all levels working on projects from the design to the maintenance phase, increasing their grasp of structure behavior, codes and factors, and predicting service life.


Safety and performance concept. Reliability assessment of concrete structures

Safety and performance concept. Reliability assessment of concrete structures

Author: fib Fédération internationale du béton

Publisher: FIB - Féd. Int. du Béton

Published: 2018-08-01

Total Pages: 375

ISBN-13: 2883941262

DOWNLOAD EBOOK

Concrete structures have been built for more than 100 years. At first, reinforced concrete was used for buildings and bridges, even for those with large spans. Lack of methods for structural analysis led to conservative and reliable design. Application of prestressed concrete started in the 40s and strongly developed in the 60s. The spans of bridges and other structures like halls, industrial structures, stands, etc. grew significantly larger. At that time, the knowledge of material behaviour, durability and overall structural performance was substantially less developed than it is today. In many countries statically determined systems with a fragile behavior were designed for cast in situ as well as precast structures. Lack of redundancy resulted in a low level of robustness in structural systems. In addition, the technical level of individual technologies (e.g. grouting of prestressed cables) was lower than it is today. The number of concrete structures, including prestressed ones, is extremely high. Over time and with increased loading, the necessity of maintaining safety and performance parameters is impossible without careful maintenance, smaller interventions, strengthening and even larger reconstructions. Although some claim that unsatisfactory structures should be replaced by new ones, it is often impossible, as authorities, in general, have only limited resources. Most structures have to remain in service, probably even longer than initially expected. In order to keep the existing concrete structures in an acceptable condition, the development of methods for monitoring, inspection and assessment, structural identification, nonlinear analysis, life cycle evaluation and safety and prediction of the future behaviour, etc. is necessary. The scatter of individual input parameters must be considered as a whole. This requires probabilistic approaches to individual partial problems and to the overall analysis. The members of the fib Task Group 2.8 “Safety and performance concepts” wrote, on the basis of the actual knowledge and experience, a comprehensive document that provides crucial knowledge for existing structures, which is also applicable to new structures. This guide to good practice is divided into 10 basic chapters dealing with individual issues that are critical for activities associated with preferably existing concrete structures. Bulletin 86 starts with the specification of the performance-based requirements during the entire lifecycle. The risk issues are described in chapter two. An extensive part is devoted to structural reliability, including practical engineering approaches and reliability assessment of existing structures. Safety concepts for design consider the lifetime of structures and summarise safety formats from simple partial safety factors to develop approaches suitable for application in sophisticated, probabilistic, non-linear analyses. Testing for design and the determination of design values from the tests is an extremely important issue. This is especially true for the evaluation of existing structures. Inspection and monitoring of existing structures are essential for maintenance, for the prediction of remaining service life and for the planning of interventions. Chapter nine presents probabilistically-based models for material degradation processes. Finally, case studies are presented in chapter ten. The results of the concrete structures monitoring as well as their application for assessment and prediction of their future behaviour are shown. The risk analysis of highway bridges was based on extensive monitoring and numerical evaluation programs. Case studies perfectly illustrate the application of the methods presented in the Bulletin. The information provided in this guide is very useful for practitioners and scientists. It provides the reader with general procedures, from the specification of requirements, monitoring, assessment to the prediction of the structures’ lifecycles. However, one must have a sufficiently large amount of experimental and other data (e.g. construction experience) in order to use these methods correctly. This data finally allows for a statistical evaluation. As it is shown in case studies, extensive monitoring programs are necessary. The publication of this guide and other documents developed within the fib will hopefully help convince the authorities responsible for safe and fluent traffic on bridges and other structures that the costs spent in monitoring are first rather small, and second, they will repay in the form of a serious assessment providing necessary information for decision about maintenance and future of important structures.


Book Synopsis Safety and performance concept. Reliability assessment of concrete structures by : fib Fédération internationale du béton

Download or read book Safety and performance concept. Reliability assessment of concrete structures written by fib Fédération internationale du béton and published by FIB - Féd. Int. du Béton. This book was released on 2018-08-01 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: Concrete structures have been built for more than 100 years. At first, reinforced concrete was used for buildings and bridges, even for those with large spans. Lack of methods for structural analysis led to conservative and reliable design. Application of prestressed concrete started in the 40s and strongly developed in the 60s. The spans of bridges and other structures like halls, industrial structures, stands, etc. grew significantly larger. At that time, the knowledge of material behaviour, durability and overall structural performance was substantially less developed than it is today. In many countries statically determined systems with a fragile behavior were designed for cast in situ as well as precast structures. Lack of redundancy resulted in a low level of robustness in structural systems. In addition, the technical level of individual technologies (e.g. grouting of prestressed cables) was lower than it is today. The number of concrete structures, including prestressed ones, is extremely high. Over time and with increased loading, the necessity of maintaining safety and performance parameters is impossible without careful maintenance, smaller interventions, strengthening and even larger reconstructions. Although some claim that unsatisfactory structures should be replaced by new ones, it is often impossible, as authorities, in general, have only limited resources. Most structures have to remain in service, probably even longer than initially expected. In order to keep the existing concrete structures in an acceptable condition, the development of methods for monitoring, inspection and assessment, structural identification, nonlinear analysis, life cycle evaluation and safety and prediction of the future behaviour, etc. is necessary. The scatter of individual input parameters must be considered as a whole. This requires probabilistic approaches to individual partial problems and to the overall analysis. The members of the fib Task Group 2.8 “Safety and performance concepts” wrote, on the basis of the actual knowledge and experience, a comprehensive document that provides crucial knowledge for existing structures, which is also applicable to new structures. This guide to good practice is divided into 10 basic chapters dealing with individual issues that are critical for activities associated with preferably existing concrete structures. Bulletin 86 starts with the specification of the performance-based requirements during the entire lifecycle. The risk issues are described in chapter two. An extensive part is devoted to structural reliability, including practical engineering approaches and reliability assessment of existing structures. Safety concepts for design consider the lifetime of structures and summarise safety formats from simple partial safety factors to develop approaches suitable for application in sophisticated, probabilistic, non-linear analyses. Testing for design and the determination of design values from the tests is an extremely important issue. This is especially true for the evaluation of existing structures. Inspection and monitoring of existing structures are essential for maintenance, for the prediction of remaining service life and for the planning of interventions. Chapter nine presents probabilistically-based models for material degradation processes. Finally, case studies are presented in chapter ten. The results of the concrete structures monitoring as well as their application for assessment and prediction of their future behaviour are shown. The risk analysis of highway bridges was based on extensive monitoring and numerical evaluation programs. Case studies perfectly illustrate the application of the methods presented in the Bulletin. The information provided in this guide is very useful for practitioners and scientists. It provides the reader with general procedures, from the specification of requirements, monitoring, assessment to the prediction of the structures’ lifecycles. However, one must have a sufficiently large amount of experimental and other data (e.g. construction experience) in order to use these methods correctly. This data finally allows for a statistical evaluation. As it is shown in case studies, extensive monitoring programs are necessary. The publication of this guide and other documents developed within the fib will hopefully help convince the authorities responsible for safe and fluent traffic on bridges and other structures that the costs spent in monitoring are first rather small, and second, they will repay in the form of a serious assessment providing necessary information for decision about maintenance and future of important structures.


Reliability Aspects in the Design and Execution of Concrete Structures

Reliability Aspects in the Design and Execution of Concrete Structures

Author: Juraj Bil?ík

Publisher: Trans Tech Publications Ltd

Published: 2016-05-19

Total Pages: 448

ISBN-13: 3038269964

DOWNLOAD EBOOK

This special volume will be useful for wide range scientific researchers and engineers from area of construction materials and structures.


Book Synopsis Reliability Aspects in the Design and Execution of Concrete Structures by : Juraj Bil?ík

Download or read book Reliability Aspects in the Design and Execution of Concrete Structures written by Juraj Bil?ík and published by Trans Tech Publications Ltd. This book was released on 2016-05-19 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: This special volume will be useful for wide range scientific researchers and engineers from area of construction materials and structures.


Durability Design of Concrete Structures

Durability Design of Concrete Structures

Author: A. Sarja

Publisher: CRC Press

Published: 2004-03-01

Total Pages: 93

ISBN-13: 0203627334

DOWNLOAD EBOOK

Concrete structures can be designed for durability by applying the principles and procedures of reliability theory combined with traditional structural design. This book is the first systematic attempt to introduce into structural design a general theory of structural reliability and existing calculation models for common degradation processes. It covers both the theoretical background and practical design for service life and includes worked examples which highlight the application of the design procedure and methods.


Book Synopsis Durability Design of Concrete Structures by : A. Sarja

Download or read book Durability Design of Concrete Structures written by A. Sarja and published by CRC Press. This book was released on 2004-03-01 with total page 93 pages. Available in PDF, EPUB and Kindle. Book excerpt: Concrete structures can be designed for durability by applying the principles and procedures of reliability theory combined with traditional structural design. This book is the first systematic attempt to introduce into structural design a general theory of structural reliability and existing calculation models for common degradation processes. It covers both the theoretical background and practical design for service life and includes worked examples which highlight the application of the design procedure and methods.


Reliability Assessment Using Stochastic Finite Element Analysis

Reliability Assessment Using Stochastic Finite Element Analysis

Author: Achintya Haldar

Publisher: John Wiley & Sons

Published: 2000-05-22

Total Pages: 356

ISBN-13: 9780471369615

DOWNLOAD EBOOK

The first complete guide to using the Stochastic Finite Element Method for reliability assessment Unlike other analytical reliability estimation techniques, the Stochastic Finite Element Method (SFEM) can be used for both implicit and explicit performance functions, making it a particularly powerful and robust tool for today's engineer. This book, written by two pioneers in SFEM-based methodologies, shows how to use SFEM for the reliability analysis of a wide range of structures. It begins by reviewing essential risk concepts, currently available risk evaluation procedures, and the use of analytical and sampling methods in estimating risk. Next, it introduces SFEM evaluation procedures, with detailed coverage of displacement-based and stress-based deterministic finite element approaches. Linear, nonlinear, static, and dynamic problems are considered separately to demonstrate the robustness of the methods. The risk or reliability estimation procedure for each case is presented in different chapters, with theory complemented by a useful series of examples. Integrating advanced concepts in risk-based design, finite elements, and mechanics, Reliability Assessment Using Stochastic Finite Element Analysis is vital reading for engineering professionals and students in all areas of the field.


Book Synopsis Reliability Assessment Using Stochastic Finite Element Analysis by : Achintya Haldar

Download or read book Reliability Assessment Using Stochastic Finite Element Analysis written by Achintya Haldar and published by John Wiley & Sons. This book was released on 2000-05-22 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first complete guide to using the Stochastic Finite Element Method for reliability assessment Unlike other analytical reliability estimation techniques, the Stochastic Finite Element Method (SFEM) can be used for both implicit and explicit performance functions, making it a particularly powerful and robust tool for today's engineer. This book, written by two pioneers in SFEM-based methodologies, shows how to use SFEM for the reliability analysis of a wide range of structures. It begins by reviewing essential risk concepts, currently available risk evaluation procedures, and the use of analytical and sampling methods in estimating risk. Next, it introduces SFEM evaluation procedures, with detailed coverage of displacement-based and stress-based deterministic finite element approaches. Linear, nonlinear, static, and dynamic problems are considered separately to demonstrate the robustness of the methods. The risk or reliability estimation procedure for each case is presented in different chapters, with theory complemented by a useful series of examples. Integrating advanced concepts in risk-based design, finite elements, and mechanics, Reliability Assessment Using Stochastic Finite Element Analysis is vital reading for engineering professionals and students in all areas of the field.


Reliability Basis of Load and Resistance Factors for Reinforced Concrete Design

Reliability Basis of Load and Resistance Factors for Reinforced Concrete Design

Author: Bruce Ellingwood

Publisher:

Published: 1978

Total Pages: 108

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Reliability Basis of Load and Resistance Factors for Reinforced Concrete Design by : Bruce Ellingwood

Download or read book Reliability Basis of Load and Resistance Factors for Reinforced Concrete Design written by Bruce Ellingwood and published by . This book was released on 1978 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Reinforced Concrete Structural Reliability

Reinforced Concrete Structural Reliability

Author: Mohamed Abdallah El-Reedy

Publisher:

Published: 2013

Total Pages: 357

ISBN-13: 9781628706901

DOWNLOAD EBOOK

Structural engineers must focus on a structure's continued safety throughout its service life. Reinforced Concrete Structural Reliability covers the methods that enable engineers to keep structures reliable during all project phases, and presents a practical exploration of up-to-date techniques for predicting the lifetime of a structure. The book also helps readers understand where the safety factors used come from and addresses the problems that arise from deviation from these factors. It also examines the question of what code is best to follow for a specific project: the American code, the.


Book Synopsis Reinforced Concrete Structural Reliability by : Mohamed Abdallah El-Reedy

Download or read book Reinforced Concrete Structural Reliability written by Mohamed Abdallah El-Reedy and published by . This book was released on 2013 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: Structural engineers must focus on a structure's continued safety throughout its service life. Reinforced Concrete Structural Reliability covers the methods that enable engineers to keep structures reliable during all project phases, and presents a practical exploration of up-to-date techniques for predicting the lifetime of a structure. The book also helps readers understand where the safety factors used come from and addresses the problems that arise from deviation from these factors. It also examines the question of what code is best to follow for a specific project: the American code, the.


Structural Reliability Analysis and Prediction

Structural Reliability Analysis and Prediction

Author: Robert E. Melchers

Publisher: Wiley

Published: 1999-04-06

Total Pages: 0

ISBN-13: 9780471983248

DOWNLOAD EBOOK

Structural reliability has become a discipline of international interest, addressing issues such as the safety of buildings, bridges, towers and other structures. This book addresses the important issue of predicting the safety of structures at the design stage and also the safety of existing, perhaps deteriorating structures. Attention is focused on the development and definition of limit states such as serviceability and ultimate strength, the definition of failure and the various models which might be used to describe strength and loading. Much consideration is given to problem formulation and to the various techniques which can be applied to problem solution. These include the First Order Second Moment method and their derivatives, as well as various Monte Carlo tchniques. Each of these are described in considerable detail and example applications are given. Structural systems are also described, as is the effect of time on reliability estimation, and on the development of design code rules on the basis of limit state principles as under-pinned by probability theory. Furthermore, procedures for the reliability estimation of existing structures are also included. The book emphasises concepts and applications, built up from basic principles and avoids undue mathematical rigour. It presents an accesible and unified account of the theory and techniques for the analysis of the reliability of engineering structures using probability theory. A balanced view of the subject is offered here not only for newcomers, but also for the more specialist reader, such as senior undergraduate and post-graduate students and practising engineers in civil, structural, geotechnical and mechanical engineering.


Book Synopsis Structural Reliability Analysis and Prediction by : Robert E. Melchers

Download or read book Structural Reliability Analysis and Prediction written by Robert E. Melchers and published by Wiley. This book was released on 1999-04-06 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Structural reliability has become a discipline of international interest, addressing issues such as the safety of buildings, bridges, towers and other structures. This book addresses the important issue of predicting the safety of structures at the design stage and also the safety of existing, perhaps deteriorating structures. Attention is focused on the development and definition of limit states such as serviceability and ultimate strength, the definition of failure and the various models which might be used to describe strength and loading. Much consideration is given to problem formulation and to the various techniques which can be applied to problem solution. These include the First Order Second Moment method and their derivatives, as well as various Monte Carlo tchniques. Each of these are described in considerable detail and example applications are given. Structural systems are also described, as is the effect of time on reliability estimation, and on the development of design code rules on the basis of limit state principles as under-pinned by probability theory. Furthermore, procedures for the reliability estimation of existing structures are also included. The book emphasises concepts and applications, built up from basic principles and avoids undue mathematical rigour. It presents an accesible and unified account of the theory and techniques for the analysis of the reliability of engineering structures using probability theory. A balanced view of the subject is offered here not only for newcomers, but also for the more specialist reader, such as senior undergraduate and post-graduate students and practising engineers in civil, structural, geotechnical and mechanical engineering.