Resummation and Renormalization in Effective Theories of Particle Physics

Resummation and Renormalization in Effective Theories of Particle Physics

Author: Antal Jakovác

Publisher: Springer

Published: 2015-11-02

Total Pages: 223

ISBN-13: 3319226207

DOWNLOAD EBOOK

Effective models of strong and electroweak interactions are extensively applied in particle physics phenomenology, and in many instances can compete with large-scale numerical simulations of Standard Model physics. These contexts include but are not limited to providing indications for phase transitions and the nature of elementary excitations of strong and electroweak matter. A precondition for obtaining high-precision predictions is the application of some advanced functional techniques to the effective models, where the sensitivity of the results to the accurate choice of the input parameters is under control and the insensitivity to the actual choice of ultraviolet regulators is ensured. The credibility of such attempts ultimately requires a clean renormalization procedure and an error estimation due to a necessary truncation in the resummation procedure. In this concise primer we discuss systematically and in sufficient technical depth the features of a number of approximate methods, as applied to various effective models of chiral symmetry breaking in strong interactions and the BEH-mechanism of symmetry breaking in the electroweak theory. After introducing the basics of the functional integral formulation of quantum field theories and the derivation of different variants of the equations which determine the n-point functions, the text elaborates on the formulation of the optimized perturbation theory and the large-N expansion, as applied to the solution of these underlying equations in vacuum. The optimisation aspects of the 2PI approximation is discussed. Each of them is presented as a specific reorganisation of the weak coupling perturbation theory. The dimensional reduction of high temperature field theories is discussed from the same viewpoint. The renormalization program is described for each approach in detail and particular attention is paid to the appropriate interpretation of the notion of renormalization in the presence of the Landau singularity. Finally, results which emerge from the application of these techniques to the thermodynamics of strong and electroweak interactions are reviewed in detail.


Book Synopsis Resummation and Renormalization in Effective Theories of Particle Physics by : Antal Jakovác

Download or read book Resummation and Renormalization in Effective Theories of Particle Physics written by Antal Jakovác and published by Springer. This book was released on 2015-11-02 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: Effective models of strong and electroweak interactions are extensively applied in particle physics phenomenology, and in many instances can compete with large-scale numerical simulations of Standard Model physics. These contexts include but are not limited to providing indications for phase transitions and the nature of elementary excitations of strong and electroweak matter. A precondition for obtaining high-precision predictions is the application of some advanced functional techniques to the effective models, where the sensitivity of the results to the accurate choice of the input parameters is under control and the insensitivity to the actual choice of ultraviolet regulators is ensured. The credibility of such attempts ultimately requires a clean renormalization procedure and an error estimation due to a necessary truncation in the resummation procedure. In this concise primer we discuss systematically and in sufficient technical depth the features of a number of approximate methods, as applied to various effective models of chiral symmetry breaking in strong interactions and the BEH-mechanism of symmetry breaking in the electroweak theory. After introducing the basics of the functional integral formulation of quantum field theories and the derivation of different variants of the equations which determine the n-point functions, the text elaborates on the formulation of the optimized perturbation theory and the large-N expansion, as applied to the solution of these underlying equations in vacuum. The optimisation aspects of the 2PI approximation is discussed. Each of them is presented as a specific reorganisation of the weak coupling perturbation theory. The dimensional reduction of high temperature field theories is discussed from the same viewpoint. The renormalization program is described for each approach in detail and particular attention is paid to the appropriate interpretation of the notion of renormalization in the presence of the Landau singularity. Finally, results which emerge from the application of these techniques to the thermodynamics of strong and electroweak interactions are reviewed in detail.


Renormalization Group and Fixed Points

Renormalization Group and Fixed Points

Author: Timothy J Hollowood

Publisher: Springer Science & Business Media

Published: 2013-03-28

Total Pages: 78

ISBN-13: 3642363121

DOWNLOAD EBOOK

This Brief presents an introduction to the theory of the renormalization group in the context of quantum field theories of relevance to particle physics. Emphasis is placed on gaining a physical understanding of the running of the couplings. The Wilsonian version of the renormalization group is related to conventional perturbative calculations with dimensional regularization and minimal subtraction. An introduction is given to some of the remarkable renormalization group properties of supersymmetric theories.


Book Synopsis Renormalization Group and Fixed Points by : Timothy J Hollowood

Download or read book Renormalization Group and Fixed Points written by Timothy J Hollowood and published by Springer Science & Business Media. This book was released on 2013-03-28 with total page 78 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Brief presents an introduction to the theory of the renormalization group in the context of quantum field theories of relevance to particle physics. Emphasis is placed on gaining a physical understanding of the running of the couplings. The Wilsonian version of the renormalization group is related to conventional perturbative calculations with dimensional regularization and minimal subtraction. An introduction is given to some of the remarkable renormalization group properties of supersymmetric theories.


Principles of Phase Structures in Particle Physics

Principles of Phase Structures in Particle Physics

Author: Hildegard Meyer-Ortmanns

Publisher: World Scientific

Published: 2006-12-06

Total Pages: 700

ISBN-13: 9814496278

DOWNLOAD EBOOK

The phase structure of particle physics shows up in matter at extremely high densities and/or temperatures as they were reached in the early universe, shortly after the big bang, or in heavy-ion collisions, as they are performed nowadays in laboratory experiments. In contrast to phase transitions of condensed matter physics, the underlying fundamental theories are better known than their macroscopic manifestations in phase transitions. These theories are quantum chromodynamics for the strong interaction part and the electroweak part of the Standard Model for the electroweak interaction. It is their non-Abelian gauge structure that makes it a big challenge to predict the type of phase conversion between phases of different symmetries and different particle contents. The book is about a variety of analytical and numerical tools that are needed to study the phase structure of particle physics. To these belong convergent and asymptotic expansions in strong and weak couplings, dimensional reduction, renormalization group studies, gap equations, Monte Carlo simulations with and without fermions, finite-size and finite-mass scaling analyses, and the approach of effective actions as supplement to first-principle calculations. Contents:General Background from Statistical PhysicsField Theoretical Framework for Models in Particle PhysicsAnalytic Methods on the Lattice and in the ContinuumNumerical Methods in Lattice Field TheoriesEffective Actions in the ContinuumPhenomenological Applications to Relativistic Heavy-Ion Collisions Readership: Theoretical and high energy physicists. Keywords:


Book Synopsis Principles of Phase Structures in Particle Physics by : Hildegard Meyer-Ortmanns

Download or read book Principles of Phase Structures in Particle Physics written by Hildegard Meyer-Ortmanns and published by World Scientific. This book was released on 2006-12-06 with total page 700 pages. Available in PDF, EPUB and Kindle. Book excerpt: The phase structure of particle physics shows up in matter at extremely high densities and/or temperatures as they were reached in the early universe, shortly after the big bang, or in heavy-ion collisions, as they are performed nowadays in laboratory experiments. In contrast to phase transitions of condensed matter physics, the underlying fundamental theories are better known than their macroscopic manifestations in phase transitions. These theories are quantum chromodynamics for the strong interaction part and the electroweak part of the Standard Model for the electroweak interaction. It is their non-Abelian gauge structure that makes it a big challenge to predict the type of phase conversion between phases of different symmetries and different particle contents. The book is about a variety of analytical and numerical tools that are needed to study the phase structure of particle physics. To these belong convergent and asymptotic expansions in strong and weak couplings, dimensional reduction, renormalization group studies, gap equations, Monte Carlo simulations with and without fermions, finite-size and finite-mass scaling analyses, and the approach of effective actions as supplement to first-principle calculations. Contents:General Background from Statistical PhysicsField Theoretical Framework for Models in Particle PhysicsAnalytic Methods on the Lattice and in the ContinuumNumerical Methods in Lattice Field TheoriesEffective Actions in the ContinuumPhenomenological Applications to Relativistic Heavy-Ion Collisions Readership: Theoretical and high energy physicists. Keywords:


Gauge Theories in Particle Physics, Volume II

Gauge Theories in Particle Physics, Volume II

Author: I.J.R. Aitchison

Publisher: CRC Press

Published: 2003-12-01

Total Pages: 484

ISBN-13: 9780849387760

DOWNLOAD EBOOK

This is the second volume of the third edition of a successful text, now substantially enlarged and updated to reflect developments over the last decade in the curricula of university courses and in particle physics research. Volume I covered relativistic quantum mechanics, electromagnetism as a gauge theory, and introductory quantum field theory, and ended with the formulation and application of quantum electrodynamics (QED), including renormalization. Building on these foundations, this second volume provides a complete, accessible, and self-contained introduction to the remaining two gauge theories of the standard model of particle physics: quantum chromodynamics (QCD) and the electroweak theory. The treatment significantly extends that of the second edition in several important respects. Simple ideas of group theory are now incorporated into the discussion of non-Abelian symmetries. Two new chapters have been added on QCD, one devoted to the renormalization group and scaling violations in deep inelastic scattering and the other to non-perturbative aspects of QCD using the lattice (path-integral) formulation of quantum field theory; the latter is also used to illuminate various aspects of renormalization theory, via analogies with condensed matter systems. Three chapters treat the fundamental topic of spontaneous symmetry breaking: the (Bogoliubov) superfluid and the (BCS) superconductor are studied in some detail; one chapter is devoted to the implications of global chiral symmetry breaking in QCD; and one to the breaking of local SU(2)xU(1) symmetry in the electroweak theory. Weak interaction phenomenology is extended to include discussion of discrete symmetries and of the possibility that neutrinos are Majorana (rather than Dirac) particles. Most of these topics are normally found only in more advanced texts, and this is the first book to treat them in a manner accessible to the wide readership that the previous editions have attracted.


Book Synopsis Gauge Theories in Particle Physics, Volume II by : I.J.R. Aitchison

Download or read book Gauge Theories in Particle Physics, Volume II written by I.J.R. Aitchison and published by CRC Press. This book was released on 2003-12-01 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the second volume of the third edition of a successful text, now substantially enlarged and updated to reflect developments over the last decade in the curricula of university courses and in particle physics research. Volume I covered relativistic quantum mechanics, electromagnetism as a gauge theory, and introductory quantum field theory, and ended with the formulation and application of quantum electrodynamics (QED), including renormalization. Building on these foundations, this second volume provides a complete, accessible, and self-contained introduction to the remaining two gauge theories of the standard model of particle physics: quantum chromodynamics (QCD) and the electroweak theory. The treatment significantly extends that of the second edition in several important respects. Simple ideas of group theory are now incorporated into the discussion of non-Abelian symmetries. Two new chapters have been added on QCD, one devoted to the renormalization group and scaling violations in deep inelastic scattering and the other to non-perturbative aspects of QCD using the lattice (path-integral) formulation of quantum field theory; the latter is also used to illuminate various aspects of renormalization theory, via analogies with condensed matter systems. Three chapters treat the fundamental topic of spontaneous symmetry breaking: the (Bogoliubov) superfluid and the (BCS) superconductor are studied in some detail; one chapter is devoted to the implications of global chiral symmetry breaking in QCD; and one to the breaking of local SU(2)xU(1) symmetry in the electroweak theory. Weak interaction phenomenology is extended to include discussion of discrete symmetries and of the possibility that neutrinos are Majorana (rather than Dirac) particles. Most of these topics are normally found only in more advanced texts, and this is the first book to treat them in a manner accessible to the wide readership that the previous editions have attracted.


Emergence of Temperature in Examples and Related Nuisances in Field Theory

Emergence of Temperature in Examples and Related Nuisances in Field Theory

Author: Tamás Sándor Biró

Publisher: Springer

Published: 2019-02-07

Total Pages: 109

ISBN-13: 3030116891

DOWNLOAD EBOOK

Field theory, relying on the concept of continuous space and time while confronted with the quantum physical nature of observable quantities, still has some fundamental challenges to face. One such challenge is to understand the emergence of complexity in the behavior of interacting elementary fields, including among other things nontrivial phase structures of elementary matter at high energy density or an atypical emergence of statistical properties, e.g., when an apparent temperature is proportional to a constant acceleration in a homogeneous gravitational field. Most modern textbooks on thermal field theory are mainly concerned with how the field theory formalism should be used if a finite temperature is given. In contrast, this short primer explores how the phenomenon of temperature emerges physically for elementary fields - inquiring about the underlying kinetic field theory and the way energy fluctuations and other noise should be handled - and it investigates whether and how this harmonizes with traditional field theory concepts like spectral evolution, the Keldysh formalism, and phase transitions.


Book Synopsis Emergence of Temperature in Examples and Related Nuisances in Field Theory by : Tamás Sándor Biró

Download or read book Emergence of Temperature in Examples and Related Nuisances in Field Theory written by Tamás Sándor Biró and published by Springer. This book was released on 2019-02-07 with total page 109 pages. Available in PDF, EPUB and Kindle. Book excerpt: Field theory, relying on the concept of continuous space and time while confronted with the quantum physical nature of observable quantities, still has some fundamental challenges to face. One such challenge is to understand the emergence of complexity in the behavior of interacting elementary fields, including among other things nontrivial phase structures of elementary matter at high energy density or an atypical emergence of statistical properties, e.g., when an apparent temperature is proportional to a constant acceleration in a homogeneous gravitational field. Most modern textbooks on thermal field theory are mainly concerned with how the field theory formalism should be used if a finite temperature is given. In contrast, this short primer explores how the phenomenon of temperature emerges physically for elementary fields - inquiring about the underlying kinetic field theory and the way energy fluctuations and other noise should be handled - and it investigates whether and how this harmonizes with traditional field theory concepts like spectral evolution, the Keldysh formalism, and phase transitions.


Field Theory, the Renormalization Group, and Critical Phenomena

Field Theory, the Renormalization Group, and Critical Phenomena

Author: D. J. Amit

Publisher: World Scientific Publishing Company Incorporated

Published: 1984-01-01

Total Pages: 394

ISBN-13: 9789971966119

DOWNLOAD EBOOK


Book Synopsis Field Theory, the Renormalization Group, and Critical Phenomena by : D. J. Amit

Download or read book Field Theory, the Renormalization Group, and Critical Phenomena written by D. J. Amit and published by World Scientific Publishing Company Incorporated. This book was released on 1984-01-01 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Nonperturbative Quantum Field Theory and the Structure of Matter

Nonperturbative Quantum Field Theory and the Structure of Matter

Author: T. Borne

Publisher: Springer Science & Business Media

Published: 2005-12-19

Total Pages: 343

ISBN-13: 0306471310

DOWNLOAD EBOOK

"This book, which presents a new view of quantum field theory, may serve as a research monograph and an alternative textbook examining topics which are not usually treated in conventional works." "Audience: This volume will appeal to researchers concerned with the foundation of the theory of matter and forces including gravitation. It will also be interesting to those working with quantum field theoretic methods in various disciplines, such as particle physics, nuclear physics, condensed mater physics, and relativity."--Jacket.


Book Synopsis Nonperturbative Quantum Field Theory and the Structure of Matter by : T. Borne

Download or read book Nonperturbative Quantum Field Theory and the Structure of Matter written by T. Borne and published by Springer Science & Business Media. This book was released on 2005-12-19 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book, which presents a new view of quantum field theory, may serve as a research monograph and an alternative textbook examining topics which are not usually treated in conventional works." "Audience: This volume will appeal to researchers concerned with the foundation of the theory of matter and forces including gravitation. It will also be interesting to those working with quantum field theoretic methods in various disciplines, such as particle physics, nuclear physics, condensed mater physics, and relativity."--Jacket.


Field Theory, The Renormalization Group And Critical Phenomena (2nd Edition)

Field Theory, The Renormalization Group And Critical Phenomena (2nd Edition)

Author: Daniel J Amit

Publisher: World Scientific Publishing Company

Published: 1984-08-31

Total Pages: 412

ISBN-13: 9813104147

DOWNLOAD EBOOK

This volume links field theory methods and concepts from particle physics with those in critical phenomena and statistical mechanics, the development starting from the latter point of view. Rigor and lengthy proofs are trimmed by using the phenomenological framework of graphs, power counting, etc., and field theoretic methods with emphasis on renormalization group techniques. The book introduces quantum field theory to those already grounded in the concepts of statistical mechanics and advanced quantum theory, with sufficient exercises in each chapter for use as a textbook in a one-semester graduate course.


Book Synopsis Field Theory, The Renormalization Group And Critical Phenomena (2nd Edition) by : Daniel J Amit

Download or read book Field Theory, The Renormalization Group And Critical Phenomena (2nd Edition) written by Daniel J Amit and published by World Scientific Publishing Company. This book was released on 1984-08-31 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume links field theory methods and concepts from particle physics with those in critical phenomena and statistical mechanics, the development starting from the latter point of view. Rigor and lengthy proofs are trimmed by using the phenomenological framework of graphs, power counting, etc., and field theoretic methods with emphasis on renormalization group techniques. The book introduces quantum field theory to those already grounded in the concepts of statistical mechanics and advanced quantum theory, with sufficient exercises in each chapter for use as a textbook in a one-semester graduate course.


The Theory of Critical Phenomena

The Theory of Critical Phenomena

Author: J. J. Binney

Publisher: Oxford University Press

Published: 1992-06-11

Total Pages: 477

ISBN-13: 0191660566

DOWNLOAD EBOOK

The successful calculation of critical exponents for continuous phase transitions is one of the main achievements of theoretical physics over the last quarter-century. This was achieved through the use of scaling and field-theoretic techniques which have since become standard equipment in many areas of physics, especially quantum field theory. This book provides a thorough introduction to these techniques. Continuous phase transitions are introduced, then the necessary statistical mechanics is summarized, followed by standard models, some exact solutions and techniques for numerical simulations. The real-space renormalization group and mean-field theory are then explained and illustrated. The final chapters cover the Landau-Ginzburg model, from physical motivation, through diagrammatic perturbation theory and renormalization to the renormalization group and the calculation of critical exponents above and below the critical temperature.


Book Synopsis The Theory of Critical Phenomena by : J. J. Binney

Download or read book The Theory of Critical Phenomena written by J. J. Binney and published by Oxford University Press. This book was released on 1992-06-11 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: The successful calculation of critical exponents for continuous phase transitions is one of the main achievements of theoretical physics over the last quarter-century. This was achieved through the use of scaling and field-theoretic techniques which have since become standard equipment in many areas of physics, especially quantum field theory. This book provides a thorough introduction to these techniques. Continuous phase transitions are introduced, then the necessary statistical mechanics is summarized, followed by standard models, some exact solutions and techniques for numerical simulations. The real-space renormalization group and mean-field theory are then explained and illustrated. The final chapters cover the Landau-Ginzburg model, from physical motivation, through diagrammatic perturbation theory and renormalization to the renormalization group and the calculation of critical exponents above and below the critical temperature.


Gauge Theories in Particle Physics, Third Edition - 2 volume set

Gauge Theories in Particle Physics, Third Edition - 2 volume set

Author: Ian J.R. Aitchison

Publisher: CRC Press

Published: 2004-01-01

Total Pages: 474

ISBN-13: 9780750309820

DOWNLOAD EBOOK

This two-volume set provides an accessible, practical, and comprehensive introduction to the three gauge theories of the standard model of particle physics: quantum electrodynamics (QED), quantum chromodynamics (QCD), and the electroweak theory. For each of them, the authors provide a thorough discussion of the main conceptual points, a detailed exposition of many practical calculations of physical quantities, and a comparison of these quantitative predictions with experimental results. For this third edition, much has been rewritten to reflect developments over the last decade, both in the curricula of university courses and in particle physics research. On the one hand, substantial new material has been introduced that is intended for use in undergraduate physics courses. New introductory chapters provide a precise historical account of the properties of quarks and leptons and a qualitative overview of the quantum field description of their interactions, at a level appropriate to third year courses. The chapter on relativistic quantum mechanics has been enlarged and is supplemented by additional sections on scattering theory and Green functions, in a form appropriate to fourth-year courses. On the other hand, since precision experiments now test the theories beyond lowest order in perturbation theory, an understanding of the data requires a more sophisticated knowledge of quantum field theory, including ideas of renormalization. The treatment of quantum field theory has therefore been considerably extended to provide a uniquely accessible and self-contained introduction to quantum field dynamics as described by Feynman graphs. The level is suitable for advanced fourth-year undergraduates and first-year graduates. These developments are all contained in the first volume, which ends with a discussion of higher order corrections in QED. The second volume is devoted to the non-Abelian gauge theories of QCD and the electroweak theory. As in the first two editions, emphasis is placed throughout on developing realistic calculations from a secure physical and conceptual basis.


Book Synopsis Gauge Theories in Particle Physics, Third Edition - 2 volume set by : Ian J.R. Aitchison

Download or read book Gauge Theories in Particle Physics, Third Edition - 2 volume set written by Ian J.R. Aitchison and published by CRC Press. This book was released on 2004-01-01 with total page 474 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume set provides an accessible, practical, and comprehensive introduction to the three gauge theories of the standard model of particle physics: quantum electrodynamics (QED), quantum chromodynamics (QCD), and the electroweak theory. For each of them, the authors provide a thorough discussion of the main conceptual points, a detailed exposition of many practical calculations of physical quantities, and a comparison of these quantitative predictions with experimental results. For this third edition, much has been rewritten to reflect developments over the last decade, both in the curricula of university courses and in particle physics research. On the one hand, substantial new material has been introduced that is intended for use in undergraduate physics courses. New introductory chapters provide a precise historical account of the properties of quarks and leptons and a qualitative overview of the quantum field description of their interactions, at a level appropriate to third year courses. The chapter on relativistic quantum mechanics has been enlarged and is supplemented by additional sections on scattering theory and Green functions, in a form appropriate to fourth-year courses. On the other hand, since precision experiments now test the theories beyond lowest order in perturbation theory, an understanding of the data requires a more sophisticated knowledge of quantum field theory, including ideas of renormalization. The treatment of quantum field theory has therefore been considerably extended to provide a uniquely accessible and self-contained introduction to quantum field dynamics as described by Feynman graphs. The level is suitable for advanced fourth-year undergraduates and first-year graduates. These developments are all contained in the first volume, which ends with a discussion of higher order corrections in QED. The second volume is devoted to the non-Abelian gauge theories of QCD and the electroweak theory. As in the first two editions, emphasis is placed throughout on developing realistic calculations from a secure physical and conceptual basis.