Sampling Theory and Analog-To-Digital Conversion

Sampling Theory and Analog-To-Digital Conversion

Author: Patrick Jungwirth

Publisher:

Published: 2018-01-15

Total Pages: 373

ISBN-13: 9781976886447

DOWNLOAD EBOOK

Why another book on sampling theory and analog-to-digital conversion? This book takes a linear system theory approach to analog-to-digital conversion. From linear systems theory, we introduce sampling theory and use the tools from linear system theory to prove Shannon's sampling theorem. Shannon's sampling theorem shows how an analog signal can be converted to a discrete time signal and how the original can be exactly recovered from the discrete time signal. Digital is an approximation to discrete time so exact reconstruction is not possible; however, practically speaking the reconstructed signal is identical to the original analog signal. Digital is more than just 1's and 0's. Digital technology is universal. Once data is in digital form, it can be converted from one digital format to another without any additional loss of information (excluding lossy data compression). We use linear system theory and the sampling theorem to derive the model for an ideal analog to digital converter. We derive performance metrics from the ideal model. The performance metrics are put to good use to illustrate how to test and evaluate an analog-to-digital converter. Applications motivate the reader to apply concepts learned. More complex applications lead the reader to an introduction to software defined radios. Appendices provide summaries of the sampling theorem, communications engineering units, transform tables, and ADC model. Chapter 1 begins by introducing the digital world. Money is used to introduce analog, discrete, and digital. Chapter 2 starts off with a simple description of linear systems. Chapter 2 takes the reader from algebra, calculus, differential equations, Fourier transforms, and back to algebra. We want the reader to have a basic understanding of signal processing. Linear system theory provides the tools to prove the sampling theorem in Chapter 3. A graphical proof and analytical proof of the sampling theorem are presented in Chapter 4. We show why wagon wheels turn backwards in Western movies. Chapter 5 covers the binary math, we need to work with analog-to-digital converters. Code examples are provided for the "software interface" for an analog-to-digital converter. A useful part of Chapter 5 is how to solve the problem of a signed 10 bit analog-to-digital converter connected to a 16 bit microprocessor. The ideal analog-to-digital converter model is developed in Chapter 6. Chapter 7 introduces some common analog-to-digital converters: flash, pipeline, successive approximation register, and delta sigma (ΔΣ). Performance metrics and testing of analog-to-digital converters are found in Chapter 8. Chapter 9 presents sampling and analog-to-digital conversion applications. Chapter 10 covers a brief introduction to analog-to-digital converter datasheets focused on software defined radio applications. Chapter 11 presents an introduction to radio receiver block diagrams and finishes with a short introduction to software defined radios. Chapter 11 completes the journey from linear systems, to sampling theory, to analog-to-digital converters, and then the most useful part, applications. We hope this book serves as a good stepping stone to more complex applications. As computer power continues to increase and costs continue to drop, new applications will be found for the future. Be part of developing the future. If you have any suggestions for improvements, or find errors please email the book author (see book preface).


Book Synopsis Sampling Theory and Analog-To-Digital Conversion by : Patrick Jungwirth

Download or read book Sampling Theory and Analog-To-Digital Conversion written by Patrick Jungwirth and published by . This book was released on 2018-01-15 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: Why another book on sampling theory and analog-to-digital conversion? This book takes a linear system theory approach to analog-to-digital conversion. From linear systems theory, we introduce sampling theory and use the tools from linear system theory to prove Shannon's sampling theorem. Shannon's sampling theorem shows how an analog signal can be converted to a discrete time signal and how the original can be exactly recovered from the discrete time signal. Digital is an approximation to discrete time so exact reconstruction is not possible; however, practically speaking the reconstructed signal is identical to the original analog signal. Digital is more than just 1's and 0's. Digital technology is universal. Once data is in digital form, it can be converted from one digital format to another without any additional loss of information (excluding lossy data compression). We use linear system theory and the sampling theorem to derive the model for an ideal analog to digital converter. We derive performance metrics from the ideal model. The performance metrics are put to good use to illustrate how to test and evaluate an analog-to-digital converter. Applications motivate the reader to apply concepts learned. More complex applications lead the reader to an introduction to software defined radios. Appendices provide summaries of the sampling theorem, communications engineering units, transform tables, and ADC model. Chapter 1 begins by introducing the digital world. Money is used to introduce analog, discrete, and digital. Chapter 2 starts off with a simple description of linear systems. Chapter 2 takes the reader from algebra, calculus, differential equations, Fourier transforms, and back to algebra. We want the reader to have a basic understanding of signal processing. Linear system theory provides the tools to prove the sampling theorem in Chapter 3. A graphical proof and analytical proof of the sampling theorem are presented in Chapter 4. We show why wagon wheels turn backwards in Western movies. Chapter 5 covers the binary math, we need to work with analog-to-digital converters. Code examples are provided for the "software interface" for an analog-to-digital converter. A useful part of Chapter 5 is how to solve the problem of a signed 10 bit analog-to-digital converter connected to a 16 bit microprocessor. The ideal analog-to-digital converter model is developed in Chapter 6. Chapter 7 introduces some common analog-to-digital converters: flash, pipeline, successive approximation register, and delta sigma (ΔΣ). Performance metrics and testing of analog-to-digital converters are found in Chapter 8. Chapter 9 presents sampling and analog-to-digital conversion applications. Chapter 10 covers a brief introduction to analog-to-digital converter datasheets focused on software defined radio applications. Chapter 11 presents an introduction to radio receiver block diagrams and finishes with a short introduction to software defined radios. Chapter 11 completes the journey from linear systems, to sampling theory, to analog-to-digital converters, and then the most useful part, applications. We hope this book serves as a good stepping stone to more complex applications. As computer power continues to increase and costs continue to drop, new applications will be found for the future. Be part of developing the future. If you have any suggestions for improvements, or find errors please email the book author (see book preface).


Sampling Theory, and Analog-To-Digital Conversion (B/W Print Edition)

Sampling Theory, and Analog-To-Digital Conversion (B/W Print Edition)

Author: Patrick Jungwirth

Publisher:

Published: 2018-02-08

Total Pages: 373

ISBN-13: 9781980218890

DOWNLOAD EBOOK

**Note** This is a black and white print version (lower cost than other print version). another book on sampling theory and analog-to-digital conversion? This book takes a linear system theory approach to analog-to-digital conversion. From linear systems theory, we introduce sampling theory and use the tools from linear system theory to prove Shannon's sampling theorem. Shannon's sampling theorem shows how an analog signal can be converted to a discrete time signal and how the original can be exactly recovered from the discrete time signal. Digital is an approximation to discrete time so exact reconstruction is not possible; however, practically speaking the reconstructed signal is identical to the original analog signal. Digital is more than just 1's and 0's. Digital technology is universal. Once data is in digital form, it can be converted from one digital format to another without any additional loss of information (excluding lossy data compression). We use linear system theory and the sampling theorem to derive the model for an ideal analog to digital converter. We derive performance metrics from the ideal model. The performance metrics are put to good use to illustrate how to test and evaluate an analog-to-digital converter. Applications motivate the reader to apply concepts learned. More complex applications lead the reader to an introduction to software defined radios. Appendices provide summaries of the sampling theorem, communications engineering units, transform tables, and ADC model. Chapter 1 begins by introducing the digital world. Money is used to introduce analog, discrete, and digital. Chapter 2 starts off with a simple description of linear systems. Chapter 2 takes the reader from algebra, calculus, differential equations, Fourier transforms, and back to algebra. We want the reader to have a basic understanding of signal processing. Linear system theory provides the tools to prove the sampling theorem in Chapter 3. A graphical proof and analytical proof of the sampling theorem are presented in Chapter 4. We show why wagon wheels turn backwards in Western movies. Chapter 5 covers the binary math, we need to work with analog-to-digital converters. Code examples are provided for the "software interface" for an analog-to-digital converter. A useful part of Chapter 5 is how to solve the problem of a signed 10 bit analog-to-digital converter connected to a 16 bit microprocessor. The ideal analog-to-digital converter model is developed in Chapter 6. Chapter 7 introduces some common analog-to-digital converters: flash, pipeline, successive approximation register, and delta sigma (ΔΣ). Performance metrics and testing of analog-to-digital converters are found in Chapter 8. Chapter 9 presents sampling and analog-to-digital conversion applications. Chapter 10 covers a brief introduction to analog-to-digital converter datasheets focused on software defined radio applications. Chapter 11 presents an introduction to radio receiver block diagrams and finishes with a short introduction to software defined radios. Chapter 11 completes the journey from linear systems, to sampling theory, to analog-to-digital converters, and then the most useful part, applications. We hope this book serves as a good stepping stone to more complex applications. As computer power continues to increase and costs continue to drop, new applications will be found for the future. Be part of developing the future. If you have any suggestions for improvements, or find errors please email the book author (see book preface).


Book Synopsis Sampling Theory, and Analog-To-Digital Conversion (B/W Print Edition) by : Patrick Jungwirth

Download or read book Sampling Theory, and Analog-To-Digital Conversion (B/W Print Edition) written by Patrick Jungwirth and published by . This book was released on 2018-02-08 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: **Note** This is a black and white print version (lower cost than other print version). another book on sampling theory and analog-to-digital conversion? This book takes a linear system theory approach to analog-to-digital conversion. From linear systems theory, we introduce sampling theory and use the tools from linear system theory to prove Shannon's sampling theorem. Shannon's sampling theorem shows how an analog signal can be converted to a discrete time signal and how the original can be exactly recovered from the discrete time signal. Digital is an approximation to discrete time so exact reconstruction is not possible; however, practically speaking the reconstructed signal is identical to the original analog signal. Digital is more than just 1's and 0's. Digital technology is universal. Once data is in digital form, it can be converted from one digital format to another without any additional loss of information (excluding lossy data compression). We use linear system theory and the sampling theorem to derive the model for an ideal analog to digital converter. We derive performance metrics from the ideal model. The performance metrics are put to good use to illustrate how to test and evaluate an analog-to-digital converter. Applications motivate the reader to apply concepts learned. More complex applications lead the reader to an introduction to software defined radios. Appendices provide summaries of the sampling theorem, communications engineering units, transform tables, and ADC model. Chapter 1 begins by introducing the digital world. Money is used to introduce analog, discrete, and digital. Chapter 2 starts off with a simple description of linear systems. Chapter 2 takes the reader from algebra, calculus, differential equations, Fourier transforms, and back to algebra. We want the reader to have a basic understanding of signal processing. Linear system theory provides the tools to prove the sampling theorem in Chapter 3. A graphical proof and analytical proof of the sampling theorem are presented in Chapter 4. We show why wagon wheels turn backwards in Western movies. Chapter 5 covers the binary math, we need to work with analog-to-digital converters. Code examples are provided for the "software interface" for an analog-to-digital converter. A useful part of Chapter 5 is how to solve the problem of a signed 10 bit analog-to-digital converter connected to a 16 bit microprocessor. The ideal analog-to-digital converter model is developed in Chapter 6. Chapter 7 introduces some common analog-to-digital converters: flash, pipeline, successive approximation register, and delta sigma (ΔΣ). Performance metrics and testing of analog-to-digital converters are found in Chapter 8. Chapter 9 presents sampling and analog-to-digital conversion applications. Chapter 10 covers a brief introduction to analog-to-digital converter datasheets focused on software defined radio applications. Chapter 11 presents an introduction to radio receiver block diagrams and finishes with a short introduction to software defined radios. Chapter 11 completes the journey from linear systems, to sampling theory, to analog-to-digital converters, and then the most useful part, applications. We hope this book serves as a good stepping stone to more complex applications. As computer power continues to increase and costs continue to drop, new applications will be found for the future. Be part of developing the future. If you have any suggestions for improvements, or find errors please email the book author (see book preface).


Analog-to-Digital Conversion

Analog-to-Digital Conversion

Author: Marcel Pelgrom

Publisher: Springer

Published: 2016-09-29

Total Pages: 548

ISBN-13: 3319449710

DOWNLOAD EBOOK

This textbook is appropriate for use in graduate-level curricula in analog-to-digital conversion, as well as for practicing engineers in need of a state-of-the-art reference on data converters. It discusses various analog-to-digital conversion principles, including sampling, quantization, reference generation, nyquist architectures and sigma-delta modulation. This book presents an overview of the state of the art in this field and focuses on issues of optimizing accuracy and speed, while reducing the power level. This new, third edition emphasizes novel calibration concepts, the specific requirements of new systems, the consequences of 22-nm technology and the need for a more statistical approach to accuracy. Pedagogical enhancements to this edition include additional, new exercises, solved examples to introduce all key, new concepts and warnings, remarks and hints, from a practitioner's perspective, wherever appropriate. Considerable background information and practical tips, from designing a PCB, to lay-out aspects, to trade-offs on system level, complement the discussion of basic principles, making this book a valuable reference for the experienced engineer.


Book Synopsis Analog-to-Digital Conversion by : Marcel Pelgrom

Download or read book Analog-to-Digital Conversion written by Marcel Pelgrom and published by Springer. This book was released on 2016-09-29 with total page 548 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is appropriate for use in graduate-level curricula in analog-to-digital conversion, as well as for practicing engineers in need of a state-of-the-art reference on data converters. It discusses various analog-to-digital conversion principles, including sampling, quantization, reference generation, nyquist architectures and sigma-delta modulation. This book presents an overview of the state of the art in this field and focuses on issues of optimizing accuracy and speed, while reducing the power level. This new, third edition emphasizes novel calibration concepts, the specific requirements of new systems, the consequences of 22-nm technology and the need for a more statistical approach to accuracy. Pedagogical enhancements to this edition include additional, new exercises, solved examples to introduce all key, new concepts and warnings, remarks and hints, from a practitioner's perspective, wherever appropriate. Considerable background information and practical tips, from designing a PCB, to lay-out aspects, to trade-offs on system level, complement the discussion of basic principles, making this book a valuable reference for the experienced engineer.


Sampling Theory and Analog to Digital Conversion Course Lecture Slides

Sampling Theory and Analog to Digital Conversion Course Lecture Slides

Author: Patrick Jungwirth

Publisher:

Published: 2018-08-05

Total Pages: 376

ISBN-13: 9781718051720

DOWNLOAD EBOOK

Lecture slides (in black/white/grayscale) for a senior level/graduate level course on analog to digital conversion for use withthe textbook Sampling Theory and Analog-to-Digital Conversion


Book Synopsis Sampling Theory and Analog to Digital Conversion Course Lecture Slides by : Patrick Jungwirth

Download or read book Sampling Theory and Analog to Digital Conversion Course Lecture Slides written by Patrick Jungwirth and published by . This book was released on 2018-08-05 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lecture slides (in black/white/grayscale) for a senior level/graduate level course on analog to digital conversion for use withthe textbook Sampling Theory and Analog-to-Digital Conversion


Data Conversion Handbook

Data Conversion Handbook

Author: Walt Kester

Publisher: Newnes

Published: 2005

Total Pages: 977

ISBN-13: 0750678410

DOWNLOAD EBOOK

This complete update of a classic handbook originally created by Analog Devices and never previously published offers the most complete and up-to-date reference available on data conversion, from the world authority on the subject. It describes in depth the theory behind and the practical design of data conversion circuits. It describes the different architectures used in A/D and D/A converters - including many advances that have been made in this technology in recent years - and provides guidelines on which types are best suited for particular applications. It covers error characterization and testing specifications, essential design information that is difficult to find elsewhere. The book also contains a wealth of practical application circuits for interfacing and supporting A/D and D/A converters within an electronic system. In short, everything an electronics engineer needs to know about data converters can be found in this volume, making it an indispensable reference with broad appeal. The accompanying CD-ROM provides software tools for testing and analyzing data converters as well as a searchable pdf version of the text. * brings together a huge amount of information impossible to locate elsewhere. * many recent advances in converter technology simply aren't covered in any other book. * a must-have design reference for any electronics design engineer or technician


Book Synopsis Data Conversion Handbook by : Walt Kester

Download or read book Data Conversion Handbook written by Walt Kester and published by Newnes. This book was released on 2005 with total page 977 pages. Available in PDF, EPUB and Kindle. Book excerpt: This complete update of a classic handbook originally created by Analog Devices and never previously published offers the most complete and up-to-date reference available on data conversion, from the world authority on the subject. It describes in depth the theory behind and the practical design of data conversion circuits. It describes the different architectures used in A/D and D/A converters - including many advances that have been made in this technology in recent years - and provides guidelines on which types are best suited for particular applications. It covers error characterization and testing specifications, essential design information that is difficult to find elsewhere. The book also contains a wealth of practical application circuits for interfacing and supporting A/D and D/A converters within an electronic system. In short, everything an electronics engineer needs to know about data converters can be found in this volume, making it an indispensable reference with broad appeal. The accompanying CD-ROM provides software tools for testing and analyzing data converters as well as a searchable pdf version of the text. * brings together a huge amount of information impossible to locate elsewhere. * many recent advances in converter technology simply aren't covered in any other book. * a must-have design reference for any electronics design engineer or technician


Sampling Theory

Sampling Theory

Author: Yonina C. Eldar

Publisher: Cambridge University Press

Published: 2015-04-09

Total Pages: 837

ISBN-13: 1107003393

DOWNLOAD EBOOK

A comprehensive guide to sampling for engineers, covering the fundamental mathematical underpinnings together with practical engineering principles and applications.


Book Synopsis Sampling Theory by : Yonina C. Eldar

Download or read book Sampling Theory written by Yonina C. Eldar and published by Cambridge University Press. This book was released on 2015-04-09 with total page 837 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive guide to sampling for engineers, covering the fundamental mathematical underpinnings together with practical engineering principles and applications.


Digital Signal Processing for Measurement Systems

Digital Signal Processing for Measurement Systems

Author: Gabriele D'Antona

Publisher: Springer Science & Business Media

Published: 2006-10-28

Total Pages: 276

ISBN-13: 0387286667

DOWNLOAD EBOOK

This excellent Senior undergraduate/graduate textbook offers an unprecedented measurement of science perspective on DSP theory and applications, a wealth of definitions and real-life examples making it invaluable for students, while practical.


Book Synopsis Digital Signal Processing for Measurement Systems by : Gabriele D'Antona

Download or read book Digital Signal Processing for Measurement Systems written by Gabriele D'Antona and published by Springer Science & Business Media. This book was released on 2006-10-28 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: This excellent Senior undergraduate/graduate textbook offers an unprecedented measurement of science perspective on DSP theory and applications, a wealth of definitions and real-life examples making it invaluable for students, while practical.


Fundamentals of Analog and Digital Signal Processing

Fundamentals of Analog and Digital Signal Processing

Author: Li Tan

Publisher: AuthorHouse

Published: 2008-04-01

Total Pages: 455

ISBN-13: 1434356418

DOWNLOAD EBOOK

The book is suitable to be used as a one-semester senior-level course for the undergraduate engineering technology program. However, the book could also be useful as a reference for undergraduate engineering students, science students, and practicing engineers.


Book Synopsis Fundamentals of Analog and Digital Signal Processing by : Li Tan

Download or read book Fundamentals of Analog and Digital Signal Processing written by Li Tan and published by AuthorHouse. This book was released on 2008-04-01 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is suitable to be used as a one-semester senior-level course for the undergraduate engineering technology program. However, the book could also be useful as a reference for undergraduate engineering students, science students, and practicing engineers.


Sampling Theory, a Renaissance

Sampling Theory, a Renaissance

Author: Götz E. Pfander

Publisher: Birkhäuser

Published: 2015-12-08

Total Pages: 532

ISBN-13: 3319197495

DOWNLOAD EBOOK

Reconstructing or approximating objects from seemingly incomplete information is a frequent challenge in mathematics, science, and engineering. A multitude of tools designed to recover hidden information are based on Shannon’s classical sampling theorem, a central pillar of Sampling Theory. The growing need to efficiently obtain precise and tailored digital representations of complex objects and phenomena requires the maturation of available tools in Sampling Theory as well as the development of complementary, novel mathematical theories. Today, research themes such as Compressed Sensing and Frame Theory re-energize the broad area of Sampling Theory. This volume illustrates the renaissance that the area of Sampling Theory is currently experiencing. It touches upon trendsetting areas such as Compressed Sensing, Finite Frames, Parametric Partial Differential Equations, Quantization, Finite Rate of Innovation, System Theory, as well as sampling in Geometry and Algebraic Topology.


Book Synopsis Sampling Theory, a Renaissance by : Götz E. Pfander

Download or read book Sampling Theory, a Renaissance written by Götz E. Pfander and published by Birkhäuser. This book was released on 2015-12-08 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reconstructing or approximating objects from seemingly incomplete information is a frequent challenge in mathematics, science, and engineering. A multitude of tools designed to recover hidden information are based on Shannon’s classical sampling theorem, a central pillar of Sampling Theory. The growing need to efficiently obtain precise and tailored digital representations of complex objects and phenomena requires the maturation of available tools in Sampling Theory as well as the development of complementary, novel mathematical theories. Today, research themes such as Compressed Sensing and Frame Theory re-energize the broad area of Sampling Theory. This volume illustrates the renaissance that the area of Sampling Theory is currently experiencing. It touches upon trendsetting areas such as Compressed Sensing, Finite Frames, Parametric Partial Differential Equations, Quantization, Finite Rate of Innovation, System Theory, as well as sampling in Geometry and Algebraic Topology.


An Investigation of Gear Mesh Failure Prediction Techniques

An Investigation of Gear Mesh Failure Prediction Techniques

Author:

Publisher: DIANE Publishing

Published:

Total Pages: 102

ISBN-13: 1428916849

DOWNLOAD EBOOK


Book Synopsis An Investigation of Gear Mesh Failure Prediction Techniques by :

Download or read book An Investigation of Gear Mesh Failure Prediction Techniques written by and published by DIANE Publishing. This book was released on with total page 102 pages. Available in PDF, EPUB and Kindle. Book excerpt: