Scientific Programming and Computer Architecture

Scientific Programming and Computer Architecture

Author: Divakar Viswanath

Publisher: MIT Press

Published: 2017-07-28

Total Pages: 625

ISBN-13: 0262036290

DOWNLOAD EBOOK

A variety of programming models relevant to scientists explained, with an emphasis on how programming constructs map to parts of the computer. What makes computer programs fast or slow? To answer this question, we have to get behind the abstractions of programming languages and look at how a computer really works. This book examines and explains a variety of scientific programming models (programming models relevant to scientists) with an emphasis on how programming constructs map to different parts of the computer's architecture. Two themes emerge: program speed and program modularity. Throughout this book, the premise is to "get under the hood," and the discussion is tied to specific programs. The book digs into linkers, compilers, operating systems, and computer architecture to understand how the different parts of the computer interact with programs. It begins with a review of C/C++ and explanations of how libraries, linkers, and Makefiles work. Programming models covered include Pthreads, OpenMP, MPI, TCP/IP, and CUDA.The emphasis on how computers work leads the reader into computer architecture and occasionally into the operating system kernel. The operating system studied is Linux, the preferred platform for scientific computing. Linux is also open source, which allows users to peer into its inner workings. A brief appendix provides a useful table of machines used to time programs. The book's website (https://github.com/divakarvi/bk-spca) has all the programs described in the book as well as a link to the html text.


Book Synopsis Scientific Programming and Computer Architecture by : Divakar Viswanath

Download or read book Scientific Programming and Computer Architecture written by Divakar Viswanath and published by MIT Press. This book was released on 2017-07-28 with total page 625 pages. Available in PDF, EPUB and Kindle. Book excerpt: A variety of programming models relevant to scientists explained, with an emphasis on how programming constructs map to parts of the computer. What makes computer programs fast or slow? To answer this question, we have to get behind the abstractions of programming languages and look at how a computer really works. This book examines and explains a variety of scientific programming models (programming models relevant to scientists) with an emphasis on how programming constructs map to different parts of the computer's architecture. Two themes emerge: program speed and program modularity. Throughout this book, the premise is to "get under the hood," and the discussion is tied to specific programs. The book digs into linkers, compilers, operating systems, and computer architecture to understand how the different parts of the computer interact with programs. It begins with a review of C/C++ and explanations of how libraries, linkers, and Makefiles work. Programming models covered include Pthreads, OpenMP, MPI, TCP/IP, and CUDA.The emphasis on how computers work leads the reader into computer architecture and occasionally into the operating system kernel. The operating system studied is Linux, the preferred platform for scientific computing. Linux is also open source, which allows users to peer into its inner workings. A brief appendix provides a useful table of machines used to time programs. The book's website (https://github.com/divakarvi/bk-spca) has all the programs described in the book as well as a link to the html text.


Scientific Programming and Computer Architecture

Scientific Programming and Computer Architecture

Author: Divakar Viswanath

Publisher:

Published: 2017

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

What makes computer programs fast or slow? To answer this question, we have to get behind the abstractions of programming languages and look at how a computer really works. This book examines and explains a variety of scientific programming models (programming models relevant to scientists) with an emphasis on how programming constructs map to different parts of the computer's architecture. Two themes emerge: program speed and program modularity. Throughout this book, the premise is to "get under the hood," and the discussion is tied to specific programs. The book digs into linkers, compilers, operating systems, and computer architecture to understand how the different parts of the computer interact with programs. It begins with a review of C/C++ and explanations of how libraries, linkers, and Makefiles work. Programming models covered include Pthreads, OpenMP, MPI, TCP/IP, and CUDA. The emphasis on how computers work leads the reader into computer architecture and occasionally into the operating system kernel. The operating system studied is Linux, the preferred platform for scientific computing. Linux is also open source, which allows users to peer into its inner workings. A brief appendix provides a useful table of machines used to time programs. -- Provided by publisher


Book Synopsis Scientific Programming and Computer Architecture by : Divakar Viswanath

Download or read book Scientific Programming and Computer Architecture written by Divakar Viswanath and published by . This book was released on 2017 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: What makes computer programs fast or slow? To answer this question, we have to get behind the abstractions of programming languages and look at how a computer really works. This book examines and explains a variety of scientific programming models (programming models relevant to scientists) with an emphasis on how programming constructs map to different parts of the computer's architecture. Two themes emerge: program speed and program modularity. Throughout this book, the premise is to "get under the hood," and the discussion is tied to specific programs. The book digs into linkers, compilers, operating systems, and computer architecture to understand how the different parts of the computer interact with programs. It begins with a review of C/C++ and explanations of how libraries, linkers, and Makefiles work. Programming models covered include Pthreads, OpenMP, MPI, TCP/IP, and CUDA. The emphasis on how computers work leads the reader into computer architecture and occasionally into the operating system kernel. The operating system studied is Linux, the preferred platform for scientific computing. Linux is also open source, which allows users to peer into its inner workings. A brief appendix provides a useful table of machines used to time programs. -- Provided by publisher


Computer Architecture for Scientists

Computer Architecture for Scientists

Author: Andrew A. Chien

Publisher: Cambridge University Press

Published: 2022-03-10

Total Pages: 266

ISBN-13: 1009008382

DOWNLOAD EBOOK

The dramatic increase in computer performance has been extraordinary, but not for all computations: it has key limits and structure. Software architects, developers, and even data scientists need to understand how exploit the fundamental structure of computer performance to harness it for future applications. Ideal for upper level undergraduates, Computer Architecture for Scientists covers four key pillars of computer performance and imparts a high-level basis for reasoning with and understanding these concepts: Small is fast – how size scaling drives performance; Implicit parallelism – how a sequential program can be executed faster with parallelism; Dynamic locality – skirting physical limits, by arranging data in a smaller space; Parallelism – increasing performance with teams of workers. These principles and models provide approachable high-level insights and quantitative modelling without distracting low-level detail. Finally, the text covers the GPU and machine-learning accelerators that have become increasingly important for mainstream applications.


Book Synopsis Computer Architecture for Scientists by : Andrew A. Chien

Download or read book Computer Architecture for Scientists written by Andrew A. Chien and published by Cambridge University Press. This book was released on 2022-03-10 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: The dramatic increase in computer performance has been extraordinary, but not for all computations: it has key limits and structure. Software architects, developers, and even data scientists need to understand how exploit the fundamental structure of computer performance to harness it for future applications. Ideal for upper level undergraduates, Computer Architecture for Scientists covers four key pillars of computer performance and imparts a high-level basis for reasoning with and understanding these concepts: Small is fast – how size scaling drives performance; Implicit parallelism – how a sequential program can be executed faster with parallelism; Dynamic locality – skirting physical limits, by arranging data in a smaller space; Parallelism – increasing performance with teams of workers. These principles and models provide approachable high-level insights and quantitative modelling without distracting low-level detail. Finally, the text covers the GPU and machine-learning accelerators that have become increasingly important for mainstream applications.


Introduction to High Performance Scientific Computing

Introduction to High Performance Scientific Computing

Author: Victor Eijkhout

Publisher: Lulu.com

Published: 2010

Total Pages: 536

ISBN-13: 1257992546

DOWNLOAD EBOOK

This is a textbook that teaches the bridging topics between numerical analysis, parallel computing, code performance, large scale applications.


Book Synopsis Introduction to High Performance Scientific Computing by : Victor Eijkhout

Download or read book Introduction to High Performance Scientific Computing written by Victor Eijkhout and published by Lulu.com. This book was released on 2010 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a textbook that teaches the bridging topics between numerical analysis, parallel computing, code performance, large scale applications.


Scientific Parallel Computing

Scientific Parallel Computing

Author: L. Ridgway Scott

Publisher: Princeton University Press

Published: 2021-03-09

Total Pages: 392

ISBN-13: 0691227659

DOWNLOAD EBOOK

What does Google's management of billions of Web pages have in common with analysis of a genome with billions of nucleotides? Both apply methods that coordinate many processors to accomplish a single task. From mining genomes to the World Wide Web, from modeling financial markets to global weather patterns, parallel computing enables computations that would otherwise be impractical if not impossible with sequential approaches alone. Its fundamental role as an enabler of simulations and data analysis continues an advance in a wide range of application areas. Scientific Parallel Computing is the first textbook to integrate all the fundamentals of parallel computing in a single volume while also providing a basis for a deeper understanding of the subject. Designed for graduate and advanced undergraduate courses in the sciences and in engineering, computer science, and mathematics, it focuses on the three key areas of algorithms, architecture, languages, and their crucial synthesis in performance. The book's computational examples, whose math prerequisites are not beyond the level of advanced calculus, derive from a breadth of topics in scientific and engineering simulation and data analysis. The programming exercises presented early in the book are designed to bring students up to speed quickly, while the book later develops projects challenging enough to guide students toward research questions in the field. The new paradigm of cluster computing is fully addressed. A supporting web site provides access to all the codes and software mentioned in the book, and offers topical information on popular parallel computing systems. Integrates all the fundamentals of parallel computing essential for today's high-performance requirements Ideal for graduate and advanced undergraduate students in the sciences and in engineering, computer science, and mathematics Extensive programming and theoretical exercises enable students to write parallel codes quickly More challenging projects later in the book introduce research questions New paradigm of cluster computing fully addressed Supporting web site provides access to all the codes and software mentioned in the book


Book Synopsis Scientific Parallel Computing by : L. Ridgway Scott

Download or read book Scientific Parallel Computing written by L. Ridgway Scott and published by Princeton University Press. This book was released on 2021-03-09 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: What does Google's management of billions of Web pages have in common with analysis of a genome with billions of nucleotides? Both apply methods that coordinate many processors to accomplish a single task. From mining genomes to the World Wide Web, from modeling financial markets to global weather patterns, parallel computing enables computations that would otherwise be impractical if not impossible with sequential approaches alone. Its fundamental role as an enabler of simulations and data analysis continues an advance in a wide range of application areas. Scientific Parallel Computing is the first textbook to integrate all the fundamentals of parallel computing in a single volume while also providing a basis for a deeper understanding of the subject. Designed for graduate and advanced undergraduate courses in the sciences and in engineering, computer science, and mathematics, it focuses on the three key areas of algorithms, architecture, languages, and their crucial synthesis in performance. The book's computational examples, whose math prerequisites are not beyond the level of advanced calculus, derive from a breadth of topics in scientific and engineering simulation and data analysis. The programming exercises presented early in the book are designed to bring students up to speed quickly, while the book later develops projects challenging enough to guide students toward research questions in the field. The new paradigm of cluster computing is fully addressed. A supporting web site provides access to all the codes and software mentioned in the book, and offers topical information on popular parallel computing systems. Integrates all the fundamentals of parallel computing essential for today's high-performance requirements Ideal for graduate and advanced undergraduate students in the sciences and in engineering, computer science, and mathematics Extensive programming and theoretical exercises enable students to write parallel codes quickly More challenging projects later in the book introduce research questions New paradigm of cluster computing fully addressed Supporting web site provides access to all the codes and software mentioned in the book


Introduction to Scientific and Technical Computing

Introduction to Scientific and Technical Computing

Author: Frank T. Willmore

Publisher: CRC Press

Published: 2016-08-19

Total Pages: 266

ISBN-13: 1315351854

DOWNLOAD EBOOK

Created to help scientists and engineers write computer code, this practical book addresses the important tools and techniques that are necessary for scientific computing, but which are not yet commonplace in science and engineering curricula. This book contains chapters summarizing the most important topics that computational researchers need to know about. It leverages the viewpoints of passionate experts involved with scientific computing courses around the globe and aims to be a starting point for new computational scientists and a reference for the experienced. Each contributed chapter focuses on a specific tool or skill, providing the content needed to provide a working knowledge of the topic in about one day. While many individual books on specific computing topics exist, none is explicitly focused on getting technical professionals and students up and running immediately across a variety of computational areas.


Book Synopsis Introduction to Scientific and Technical Computing by : Frank T. Willmore

Download or read book Introduction to Scientific and Technical Computing written by Frank T. Willmore and published by CRC Press. This book was released on 2016-08-19 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: Created to help scientists and engineers write computer code, this practical book addresses the important tools and techniques that are necessary for scientific computing, but which are not yet commonplace in science and engineering curricula. This book contains chapters summarizing the most important topics that computational researchers need to know about. It leverages the viewpoints of passionate experts involved with scientific computing courses around the globe and aims to be a starting point for new computational scientists and a reference for the experienced. Each contributed chapter focuses on a specific tool or skill, providing the content needed to provide a working knowledge of the topic in about one day. While many individual books on specific computing topics exist, none is explicitly focused on getting technical professionals and students up and running immediately across a variety of computational areas.


Scientific Computing with Multicore and Accelerators

Scientific Computing with Multicore and Accelerators

Author: Jakub Kurzak

Publisher: CRC Press

Published: 2010-12-07

Total Pages: 495

ISBN-13: 1439825378

DOWNLOAD EBOOK

The hybrid/heterogeneous nature of future microprocessors and large high-performance computing systems will result in a reliance on two major types of components: multicore/manycore central processing units and special purpose hardware/massively parallel accelerators. While these technologies have numerous benefits, they also pose substantial perfo


Book Synopsis Scientific Computing with Multicore and Accelerators by : Jakub Kurzak

Download or read book Scientific Computing with Multicore and Accelerators written by Jakub Kurzak and published by CRC Press. This book was released on 2010-12-07 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: The hybrid/heterogeneous nature of future microprocessors and large high-performance computing systems will result in a reliance on two major types of components: multicore/manycore central processing units and special purpose hardware/massively parallel accelerators. While these technologies have numerous benefits, they also pose substantial perfo


Scientific Software Design

Scientific Software Design

Author: Damian Rouson

Publisher: Cambridge University Press

Published: 2011-04-29

Total Pages: 405

ISBN-13: 1139498789

DOWNLOAD EBOOK

The authors analyze how the structure of a package determines its developmental complexity according to such measures as bug search times and documentation information content. The work presents arguments for why these issues impact solution cost and time more than does scalable performance. The final chapter explores the question of scalable execution and shows how scalable design relates to scalable execution. The book's focus is on program organization, which has received considerable attention in the broader software engineering community, where graphical description standards for modeling software structure and behavior have been developed by computer scientists. These discussions might be enriched by engineers who write scientific codes. This book aims to bring such scientific programmers into discussion with computer scientists. The authors do so by introducing object-oriented software design patterns in the context of scientific simulation.


Book Synopsis Scientific Software Design by : Damian Rouson

Download or read book Scientific Software Design written by Damian Rouson and published by Cambridge University Press. This book was released on 2011-04-29 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors analyze how the structure of a package determines its developmental complexity according to such measures as bug search times and documentation information content. The work presents arguments for why these issues impact solution cost and time more than does scalable performance. The final chapter explores the question of scalable execution and shows how scalable design relates to scalable execution. The book's focus is on program organization, which has received considerable attention in the broader software engineering community, where graphical description standards for modeling software structure and behavior have been developed by computer scientists. These discussions might be enriched by engineers who write scientific codes. This book aims to bring such scientific programmers into discussion with computer scientists. The authors do so by introducing object-oriented software design patterns in the context of scientific simulation.


Scientific Programming

Scientific Programming

Author: Luciano Maria Barone

Publisher: World Scientific

Published: 2014

Total Pages: 718

ISBN-13: 9814513415

DOWNLOAD EBOOK

The book teaches students to model a scientific problem and write a computer program in C language to solve that problem. It introduces the basics of C language, and then describes and discusses algorithms commonly used in scientific applications (e.g. searching, graphs, statistics, equation solving, Monte Carlo methods etc.).


Book Synopsis Scientific Programming by : Luciano Maria Barone

Download or read book Scientific Programming written by Luciano Maria Barone and published by World Scientific. This book was released on 2014 with total page 718 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book teaches students to model a scientific problem and write a computer program in C language to solve that problem. It introduces the basics of C language, and then describes and discusses algorithms commonly used in scientific applications (e.g. searching, graphs, statistics, equation solving, Monte Carlo methods etc.).


Computer Science and Scientific Computing

Computer Science and Scientific Computing

Author: James M. Ortega

Publisher: Elsevier

Published: 2014-05-10

Total Pages: 317

ISBN-13: 1483272486

DOWNLOAD EBOOK

Computer Science and Scientific Computing contains the proceedings of the Third ICASE Conference on Scientific Computing held in Williamsburg, Virginia, on April l and 2, 1976, under the auspices of the Institute for Computer Applications in Systems Engineering at the NASA Langley Research Center. The conference provided a forum for reviewing all the aspects of scientific computing and covered topics ranging from computer-aided design (CAD) and computer science technology to the design of large hydrodynamics codes. Case studies in reliable computing are also presented. Comprised of 13 chapters, this book begins with an introduction to the use of the hierarchical family concept in the development of scientific programming systems. The discussion then turns to the data structures of scientific computing and their representation and management; some important CAD capabilities required to support aerospace design in the areas of interactive support, information management, and computer hardware advances as well as some computer science developments which may contribute significantly to making such capabilities possible; and the use of symbolic computation systems for problem solving in scientific research. Subsequent chapters deal with computer applications in astrophysics; the possibility of computing turbulence and numerical wind tunnels; and the basis for a general-purpose program for finite element analysis. Software tools for computer graphics are also considered. This monograph will be of value to scientists, systems designers and engineers, and students in computer science who have an interest in the subject of scientific computing.


Book Synopsis Computer Science and Scientific Computing by : James M. Ortega

Download or read book Computer Science and Scientific Computing written by James M. Ortega and published by Elsevier. This book was released on 2014-05-10 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computer Science and Scientific Computing contains the proceedings of the Third ICASE Conference on Scientific Computing held in Williamsburg, Virginia, on April l and 2, 1976, under the auspices of the Institute for Computer Applications in Systems Engineering at the NASA Langley Research Center. The conference provided a forum for reviewing all the aspects of scientific computing and covered topics ranging from computer-aided design (CAD) and computer science technology to the design of large hydrodynamics codes. Case studies in reliable computing are also presented. Comprised of 13 chapters, this book begins with an introduction to the use of the hierarchical family concept in the development of scientific programming systems. The discussion then turns to the data structures of scientific computing and their representation and management; some important CAD capabilities required to support aerospace design in the areas of interactive support, information management, and computer hardware advances as well as some computer science developments which may contribute significantly to making such capabilities possible; and the use of symbolic computation systems for problem solving in scientific research. Subsequent chapters deal with computer applications in astrophysics; the possibility of computing turbulence and numerical wind tunnels; and the basis for a general-purpose program for finite element analysis. Software tools for computer graphics are also considered. This monograph will be of value to scientists, systems designers and engineers, and students in computer science who have an interest in the subject of scientific computing.