Self-Organized Nanoscale Materials

Self-Organized Nanoscale Materials

Author: Motonari Adachi

Publisher: Springer Science & Business Media

Published: 2006-10-31

Total Pages: 334

ISBN-13: 0387279768

DOWNLOAD EBOOK

First to review nanoscale self-assembly employing such a wide variety of methods Covers a wide variety physical, chemical and biological systems, phenomena, and applications First overviews of nanotube biotechnology and bimetallic nanoparticles


Book Synopsis Self-Organized Nanoscale Materials by : Motonari Adachi

Download or read book Self-Organized Nanoscale Materials written by Motonari Adachi and published by Springer Science & Business Media. This book was released on 2006-10-31 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: First to review nanoscale self-assembly employing such a wide variety of methods Covers a wide variety physical, chemical and biological systems, phenomena, and applications First overviews of nanotube biotechnology and bimetallic nanoparticles


Soft Machines

Soft Machines

Author: Richard Anthony Lewis Jones

Publisher: Oxford University Press

Published: 2004

Total Pages: 238

ISBN-13: 0198528558

DOWNLOAD EBOOK

Enthusiasts look forward to a time when tiny machines reassemble matter and process information but is their vision realistic? 'Soft Machines' explains why the nanoworld is so different to the macro-world that we are all familar with and shows how it has more in common with biology than conventional engineering.


Book Synopsis Soft Machines by : Richard Anthony Lewis Jones

Download or read book Soft Machines written by Richard Anthony Lewis Jones and published by Oxford University Press. This book was released on 2004 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Enthusiasts look forward to a time when tiny machines reassemble matter and process information but is their vision realistic? 'Soft Machines' explains why the nanoworld is so different to the macro-world that we are all familar with and shows how it has more in common with biology than conventional engineering.


Self-Assembled Nanostructures

Self-Assembled Nanostructures

Author: Jin Zhang

Publisher: Springer Science & Business Media

Published: 2006-04-11

Total Pages: 327

ISBN-13: 0306479419

DOWNLOAD EBOOK

Nanostructures refer to materials that have relevant dimensions on the nanometer length scales and reside in the mesoscopic regime between isolated atoms and molecules in bulk matter. These materials have unique physical properties that are distinctly different from bulk materials. Self-Assembled Nanostructures provides systematic coverage of basic nanomaterials science including materials assembly and synthesis, characterization, and application. Suitable for both beginners and experts, it balances the chemistry aspects of nanomaterials with physical principles. It also highlights nanomaterial-based architectures including assembled or self-assembled systems. Filled with in-depth discussion of important applications of nano-architectures as well as potential applications ranging from physical to chemical and biological systems, Self-Assembled Nanostructures is the essential reference or text for scientists involved with nanostructures.


Book Synopsis Self-Assembled Nanostructures by : Jin Zhang

Download or read book Self-Assembled Nanostructures written by Jin Zhang and published by Springer Science & Business Media. This book was released on 2006-04-11 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanostructures refer to materials that have relevant dimensions on the nanometer length scales and reside in the mesoscopic regime between isolated atoms and molecules in bulk matter. These materials have unique physical properties that are distinctly different from bulk materials. Self-Assembled Nanostructures provides systematic coverage of basic nanomaterials science including materials assembly and synthesis, characterization, and application. Suitable for both beginners and experts, it balances the chemistry aspects of nanomaterials with physical principles. It also highlights nanomaterial-based architectures including assembled or self-assembled systems. Filled with in-depth discussion of important applications of nano-architectures as well as potential applications ranging from physical to chemical and biological systems, Self-Assembled Nanostructures is the essential reference or text for scientists involved with nanostructures.


Self-Organization During Friction

Self-Organization During Friction

Author: German Fox-Rabinovich

Publisher: CRC Press

Published: 2006-09-18

Total Pages: 478

ISBN-13: 1420017861

DOWNLOAD EBOOK

In our present era of nanoscience and nanotechnology, new materials are poised to take center stage in dramatically improving friction and wear behavior under extreme conditions. Compiled by two eminent experts, Self-Organization During Friction: Advanced Surface-Engineered Materials and Systems Design details the latest advances and developments i


Book Synopsis Self-Organization During Friction by : German Fox-Rabinovich

Download or read book Self-Organization During Friction written by German Fox-Rabinovich and published by CRC Press. This book was released on 2006-09-18 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: In our present era of nanoscience and nanotechnology, new materials are poised to take center stage in dramatically improving friction and wear behavior under extreme conditions. Compiled by two eminent experts, Self-Organization During Friction: Advanced Surface-Engineered Materials and Systems Design details the latest advances and developments i


Nanoscience with Liquid Crystals

Nanoscience with Liquid Crystals

Author: Quan Li

Publisher: Springer Science & Business

Published: 2014-04-17

Total Pages: 431

ISBN-13: 3319048678

DOWNLOAD EBOOK

This book focuses on the exciting topic of nanoscience with liquid crystals: from self-organized nanostructures to applications. The elegant self-organized liquid crystalline nanostructures, the synergetic characteristics of liquid crystals and nanoparticles, liquid crystalline nanomaterials, synthesis of nanomaterials using liquid crystals as templates, nanoconfinement and nanoparticles of liquid crystals are covered and discussed, and the prospect of fabricating functional materials is highlighted. Contributions, collecting the scattered literature of the field from leading and active players, are compiled to make the book a reference book. Readers will find the book useful and of benefit both as summaries for works in this field and as tutorials and explanations of concepts for those just entering the field. Additionally, the book helps to stimulate future developments.


Book Synopsis Nanoscience with Liquid Crystals by : Quan Li

Download or read book Nanoscience with Liquid Crystals written by Quan Li and published by Springer Science & Business. This book was released on 2014-04-17 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the exciting topic of nanoscience with liquid crystals: from self-organized nanostructures to applications. The elegant self-organized liquid crystalline nanostructures, the synergetic characteristics of liquid crystals and nanoparticles, liquid crystalline nanomaterials, synthesis of nanomaterials using liquid crystals as templates, nanoconfinement and nanoparticles of liquid crystals are covered and discussed, and the prospect of fabricating functional materials is highlighted. Contributions, collecting the scattered literature of the field from leading and active players, are compiled to make the book a reference book. Readers will find the book useful and of benefit both as summaries for works in this field and as tutorials and explanations of concepts for those just entering the field. Additionally, the book helps to stimulate future developments.


Introduction to Nanoscale Science and Technology

Introduction to Nanoscale Science and Technology

Author: Massimiliano Di Ventra

Publisher: Springer Science & Business Media

Published: 2004-06-30

Total Pages: 608

ISBN-13: 1402077203

DOWNLOAD EBOOK

From the reviews: "...A class in nanoscale science and technology is daunting for the educator, who must organize a large collection of materials to cover the field, and for the student, who must absorb all the new concepts. This textbook is an excellent resource that allows students from any engineering background to quickly understand the foundations and exciting advances of the field. The example problems with answers and the long list of references in each chapter are a big plus for course tutors. The book is organized into seven sections. The first, nanoscale fabrication and characterization, covers nanolithography, self-assembly, and scanning probe microscopy. Of these, we enjoyed the section on nanolithography most, as it includes many interesting details from industrial manufacturing processes. The chapter on self-assembly also provides an excellent overview by introducing six types of intermolecular interactions and the ways these can be employed to fabricate nanostructures. The second section covers nanomaterials and nanostructures. Out of its 110 pages, 45 are devoted to carbon nanotubes. Fullerenes and quantum dots each have their own chapter that focuses on the properties and applications of these nanostructures. Nanolayer, nanowire, and nanoparticle composites of metals and semiconductors are briefly covered (just 12 pages), with slightly more discussion of specific applications. The section on nanoscale electronics begins with a history of microelectronics before discussing the difficulties in shrinking transistor size further. The discussion of problems (leakage current, hot electrons, doping fluctuations, etc.) and possible solutions (high- k dielectrics, double-gate devices) could easily motivate deeper discussions of nanoscale electrical transport. A chapter on molecular electronics considers transport through alkanes, molecular transistors, and DNA in a simple, qualitative manner we found highly instructive. Nanoscale magnetic systems are examined in the fourth section. The concept of quantum computation is nicely presented, although the discussion of how this can be achieved with controlled spin states is (perhaps necessarily) not clear. We found the chapter on magnetic storage to be one of the most lucid in the book. The giant magnetoresistive effect, operation of spin valves, and issues in magnetic scaling are easier to understand when placed in the context of the modern magnetic hard disk drive. Micro- and nanoelectromechanical systems are covered with an emphasis on the integration of sensing, computation, and communication. Here, the student can see advanced applications of lithography. The sixth section, nanoscale optoelectronics, describes quantum dots, organic optoelectronics, and photonic crystals. The chapter on organic optoelectronics is especially clear in its discussion of the fundamentals of this complicated field. The book concludes with an overview of nanobiotechnology that covers biomimetics, biomolecular motors, and nanofluidics. Because so many authors have contributed to this textbook, it suffers a bit from repetition. However, this also allows sections to be omitted without any adverse effect on student comprehension. We would have liked to see more technology to balance the science; apart from the chapters on lithography and magnetic storage, little more than an acknowledgment is given to commercial applications. Overall, this book serves as an excellent starting point for the study of nanoscale science and technology, and we recommend it to anyone with a modest scientific background. It is also a great vehicle to motivate the study of science at a time when interest is waning. Nanotechnology educators should look no further." (MATERIALS TODAY, June 2005)


Book Synopsis Introduction to Nanoscale Science and Technology by : Massimiliano Di Ventra

Download or read book Introduction to Nanoscale Science and Technology written by Massimiliano Di Ventra and published by Springer Science & Business Media. This book was released on 2004-06-30 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: "...A class in nanoscale science and technology is daunting for the educator, who must organize a large collection of materials to cover the field, and for the student, who must absorb all the new concepts. This textbook is an excellent resource that allows students from any engineering background to quickly understand the foundations and exciting advances of the field. The example problems with answers and the long list of references in each chapter are a big plus for course tutors. The book is organized into seven sections. The first, nanoscale fabrication and characterization, covers nanolithography, self-assembly, and scanning probe microscopy. Of these, we enjoyed the section on nanolithography most, as it includes many interesting details from industrial manufacturing processes. The chapter on self-assembly also provides an excellent overview by introducing six types of intermolecular interactions and the ways these can be employed to fabricate nanostructures. The second section covers nanomaterials and nanostructures. Out of its 110 pages, 45 are devoted to carbon nanotubes. Fullerenes and quantum dots each have their own chapter that focuses on the properties and applications of these nanostructures. Nanolayer, nanowire, and nanoparticle composites of metals and semiconductors are briefly covered (just 12 pages), with slightly more discussion of specific applications. The section on nanoscale electronics begins with a history of microelectronics before discussing the difficulties in shrinking transistor size further. The discussion of problems (leakage current, hot electrons, doping fluctuations, etc.) and possible solutions (high- k dielectrics, double-gate devices) could easily motivate deeper discussions of nanoscale electrical transport. A chapter on molecular electronics considers transport through alkanes, molecular transistors, and DNA in a simple, qualitative manner we found highly instructive. Nanoscale magnetic systems are examined in the fourth section. The concept of quantum computation is nicely presented, although the discussion of how this can be achieved with controlled spin states is (perhaps necessarily) not clear. We found the chapter on magnetic storage to be one of the most lucid in the book. The giant magnetoresistive effect, operation of spin valves, and issues in magnetic scaling are easier to understand when placed in the context of the modern magnetic hard disk drive. Micro- and nanoelectromechanical systems are covered with an emphasis on the integration of sensing, computation, and communication. Here, the student can see advanced applications of lithography. The sixth section, nanoscale optoelectronics, describes quantum dots, organic optoelectronics, and photonic crystals. The chapter on organic optoelectronics is especially clear in its discussion of the fundamentals of this complicated field. The book concludes with an overview of nanobiotechnology that covers biomimetics, biomolecular motors, and nanofluidics. Because so many authors have contributed to this textbook, it suffers a bit from repetition. However, this also allows sections to be omitted without any adverse effect on student comprehension. We would have liked to see more technology to balance the science; apart from the chapters on lithography and magnetic storage, little more than an acknowledgment is given to commercial applications. Overall, this book serves as an excellent starting point for the study of nanoscale science and technology, and we recommend it to anyone with a modest scientific background. It is also a great vehicle to motivate the study of science at a time when interest is waning. Nanotechnology educators should look no further." (MATERIALS TODAY, June 2005)


Self-Organized Morphology in Nanostructured Materials

Self-Organized Morphology in Nanostructured Materials

Author: Katharina Al-Shamery

Publisher: Springer Science & Business Media

Published: 2007-12-27

Total Pages: 182

ISBN-13: 3540726756

DOWNLOAD EBOOK

Integrating nano and microphysical effects, this book’s team of expert authors offers new insights into self-organized structure formation in nanomaterials. A major question addressed in this book is the role of spatial and temporal order. In particular, you’ll discover how to apply concepts developed on macroscopic and microscopic scales to structure formation occurring on nanoscales, a key focus of interest at the frontiers of science.


Book Synopsis Self-Organized Morphology in Nanostructured Materials by : Katharina Al-Shamery

Download or read book Self-Organized Morphology in Nanostructured Materials written by Katharina Al-Shamery and published by Springer Science & Business Media. This book was released on 2007-12-27 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt: Integrating nano and microphysical effects, this book’s team of expert authors offers new insights into self-organized structure formation in nanomaterials. A major question addressed in this book is the role of spatial and temporal order. In particular, you’ll discover how to apply concepts developed on macroscopic and microscopic scales to structure formation occurring on nanoscales, a key focus of interest at the frontiers of science.


Kinetics in Nanoscale Materials

Kinetics in Nanoscale Materials

Author: King-Ning Tu

Publisher: John Wiley & Sons

Published: 2014-05-16

Total Pages: 350

ISBN-13: 1118742834

DOWNLOAD EBOOK

As the ability to produce nanomaterials advances, it becomes more important to understand how the energy of the atoms in these materials is affected by their reduced dimensions. Written by an acclaimed author team, Kinetics in Nanoscale Materials is the first book to discuss simple but effective models of the systems and processes that have recently been discovered. The text, for researchers and graduate students, combines the novelty of nanoscale processes and systems with the transparency of mathematical models and generality of basic ideas relating to nanoscience and nanotechnology.


Book Synopsis Kinetics in Nanoscale Materials by : King-Ning Tu

Download or read book Kinetics in Nanoscale Materials written by King-Ning Tu and published by John Wiley & Sons. This book was released on 2014-05-16 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: As the ability to produce nanomaterials advances, it becomes more important to understand how the energy of the atoms in these materials is affected by their reduced dimensions. Written by an acclaimed author team, Kinetics in Nanoscale Materials is the first book to discuss simple but effective models of the systems and processes that have recently been discovered. The text, for researchers and graduate students, combines the novelty of nanoscale processes and systems with the transparency of mathematical models and generality of basic ideas relating to nanoscience and nanotechnology.


Instabilities and Self-organization in Materials: Fundamentals of nanoscience

Instabilities and Self-organization in Materials: Fundamentals of nanoscience

Author: Nasr Mostafa Ghoniem

Publisher:

Published: 2008

Total Pages: 1158

ISBN-13: 9780199298693

DOWNLOAD EBOOK

Instabilities and self-organisation in materials are at the core of technological applications. In nano-technology, manufacturing of electronic and electromagnetic devices relies on the natural tendency of materials to undergo 'self-organisaton'. Fundamentals are covered in volume I and applications in volume II.


Book Synopsis Instabilities and Self-organization in Materials: Fundamentals of nanoscience by : Nasr Mostafa Ghoniem

Download or read book Instabilities and Self-organization in Materials: Fundamentals of nanoscience written by Nasr Mostafa Ghoniem and published by . This book was released on 2008 with total page 1158 pages. Available in PDF, EPUB and Kindle. Book excerpt: Instabilities and self-organisation in materials are at the core of technological applications. In nano-technology, manufacturing of electronic and electromagnetic devices relies on the natural tendency of materials to undergo 'self-organisaton'. Fundamentals are covered in volume I and applications in volume II.


Nanostructured Materials in Electrochemistry

Nanostructured Materials in Electrochemistry

Author: Ali Eftekhari

Publisher: John Wiley & Sons

Published: 2008-06-25

Total Pages: 489

ISBN-13: 3527621512

DOWNLOAD EBOOK

Providing the unique and vital link between the worlds of electrochemistry and nanomaterials, this reference and handbook covers advances in electrochemistry through the nanoscale control of electrode structures, as well as advances in nanotechnology through electrochemical synthesis strategies. It demonstrates how electrochemical methods are of great scientific and commercial interest due to their low cost and high efficiency, and includes the synthesis of nanowires, nanoparticles, nanoporous and layered nanomaterials of various compositions, as well as their applications -- ranging from superior electrode materials to energy storage, biosensors, and electroanalytical devices.


Book Synopsis Nanostructured Materials in Electrochemistry by : Ali Eftekhari

Download or read book Nanostructured Materials in Electrochemistry written by Ali Eftekhari and published by John Wiley & Sons. This book was released on 2008-06-25 with total page 489 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing the unique and vital link between the worlds of electrochemistry and nanomaterials, this reference and handbook covers advances in electrochemistry through the nanoscale control of electrode structures, as well as advances in nanotechnology through electrochemical synthesis strategies. It demonstrates how electrochemical methods are of great scientific and commercial interest due to their low cost and high efficiency, and includes the synthesis of nanowires, nanoparticles, nanoporous and layered nanomaterials of various compositions, as well as their applications -- ranging from superior electrode materials to energy storage, biosensors, and electroanalytical devices.