Semiconductor Device Modelling

Semiconductor Device Modelling

Author: Christopher M. Snowden

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 267

ISBN-13: 1447110331

DOWNLOAD EBOOK

Semiconductor device modelling has developed in recent years from being solely the domain of device physicists to span broader technological disciplines involved in device and electronic circuit design and develop ment. The rapid emergence of very high speed, high density integrated circuit technology and the drive towards high speed communications has meant that extremely small-scale device structures are used in contempor ary designs. The characterisation and analysis of these devices can no longer be satisfied by electrical measurements alone. Traditional equivalent circuit models and closed-form analytical models cannot always provide consis tently accurate results for all modes of operation of these very small devices. Furthermore, the highly competitive nature of the semiconductor industry has led to the need to minimise development costs and lead-time associated with introducing new designs. This has meant that there has been a greater demand for models capable of increasing our understanding of how these devices operate and capable of predicting accurate quantitative results. The desire to move towards computer aided design and expert systems has reinforced the need for models capable of representing device operation under DC, small-signal, large-signal and high frequency operation. It is also desirable to relate the physical structure of the device to the electrical performance. This demand for better models has led to the introduction of improved equivalent circuit models and a upsurge in interest in using physical models.


Book Synopsis Semiconductor Device Modelling by : Christopher M. Snowden

Download or read book Semiconductor Device Modelling written by Christopher M. Snowden and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 267 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconductor device modelling has developed in recent years from being solely the domain of device physicists to span broader technological disciplines involved in device and electronic circuit design and develop ment. The rapid emergence of very high speed, high density integrated circuit technology and the drive towards high speed communications has meant that extremely small-scale device structures are used in contempor ary designs. The characterisation and analysis of these devices can no longer be satisfied by electrical measurements alone. Traditional equivalent circuit models and closed-form analytical models cannot always provide consis tently accurate results for all modes of operation of these very small devices. Furthermore, the highly competitive nature of the semiconductor industry has led to the need to minimise development costs and lead-time associated with introducing new designs. This has meant that there has been a greater demand for models capable of increasing our understanding of how these devices operate and capable of predicting accurate quantitative results. The desire to move towards computer aided design and expert systems has reinforced the need for models capable of representing device operation under DC, small-signal, large-signal and high frequency operation. It is also desirable to relate the physical structure of the device to the electrical performance. This demand for better models has led to the introduction of improved equivalent circuit models and a upsurge in interest in using physical models.


Semiconductor Devices

Semiconductor Devices

Author: Kevin M. Kramer

Publisher: Prentice Hall

Published: 1997

Total Pages: 746

ISBN-13:

DOWNLOAD EBOOK

CD-ROM contains: "Win32 version of SGFramework and the simulations contains in the book."


Book Synopsis Semiconductor Devices by : Kevin M. Kramer

Download or read book Semiconductor Devices written by Kevin M. Kramer and published by Prentice Hall. This book was released on 1997 with total page 746 pages. Available in PDF, EPUB and Kindle. Book excerpt: CD-ROM contains: "Win32 version of SGFramework and the simulations contains in the book."


Introduction to Semiconductor Device Modelling

Introduction to Semiconductor Device Modelling

Author: Christopher M. Snowden

Publisher: World Scientific

Published: 1998

Total Pages: 242

ISBN-13: 9789810236939

DOWNLOAD EBOOK

This book deals mainly with physical device models which are developed from the carrier transport physics and device geometry considerations. The text concentrates on silicon and gallium arsenide devices and includes models of silicon bipolar junction transistors, junction field effect transistors (JFETs), MESFETs, silicon and GaAs MESFETs, transferred electron devices, pn junction diodes and Schottky varactor diodes. The modelling techniques of more recent devices such as the heterojunction bipolar transistors (HBT) and the high electron mobility transistors are discussed. This book contains details of models for both equilibrium and non-equilibrium transport conditions. The modelling Technique of Small-scale devices is discussed and techniques applicable to submicron-dimensioned devices are included. A section on modern quantum transport analysis techniques is included. Details of essential numerical schemes are given and a variety of device models are used to illustrate the application of these techniques in various fields.


Book Synopsis Introduction to Semiconductor Device Modelling by : Christopher M. Snowden

Download or read book Introduction to Semiconductor Device Modelling written by Christopher M. Snowden and published by World Scientific. This book was released on 1998 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals mainly with physical device models which are developed from the carrier transport physics and device geometry considerations. The text concentrates on silicon and gallium arsenide devices and includes models of silicon bipolar junction transistors, junction field effect transistors (JFETs), MESFETs, silicon and GaAs MESFETs, transferred electron devices, pn junction diodes and Schottky varactor diodes. The modelling techniques of more recent devices such as the heterojunction bipolar transistors (HBT) and the high electron mobility transistors are discussed. This book contains details of models for both equilibrium and non-equilibrium transport conditions. The modelling Technique of Small-scale devices is discussed and techniques applicable to submicron-dimensioned devices are included. A section on modern quantum transport analysis techniques is included. Details of essential numerical schemes are given and a variety of device models are used to illustrate the application of these techniques in various fields.


The Monte Carlo Method for Semiconductor Device Simulation

The Monte Carlo Method for Semiconductor Device Simulation

Author: Carlo Jacoboni

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 370

ISBN-13: 3709169631

DOWNLOAD EBOOK

This volume presents the application of the Monte Carlo method to the simulation of semiconductor devices, reviewing the physics of transport in semiconductors, followed by an introduction to the physics of semiconductor devices.


Book Synopsis The Monte Carlo Method for Semiconductor Device Simulation by : Carlo Jacoboni

Download or read book The Monte Carlo Method for Semiconductor Device Simulation written by Carlo Jacoboni and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents the application of the Monte Carlo method to the simulation of semiconductor devices, reviewing the physics of transport in semiconductors, followed by an introduction to the physics of semiconductor devices.


Monte Carlo Simulation of Semiconductor Devices

Monte Carlo Simulation of Semiconductor Devices

Author: C. Moglestue

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 343

ISBN-13: 9401581339

DOWNLOAD EBOOK

Particle simulation of semiconductor devices is a rather new field which has started to catch the interest of the world's scientific community. It represents a time-continuous solution of Boltzmann's transport equation, or its quantum mechanical equivalent, and the field equation, without encountering the usual numerical problems associated with the direct solution. The technique is based on first physical principles by following in detail the transport histories of indi vidual particles and gives a profound insight into the physics of semiconductor devices. The method can be applied to devices of any geometrical complexity and material composition. It yields an accurate description of the device, which is not limited by the assumptions made behind the alternative drift diffusion and hydrodynamic models, which represent approximate solutions to the transport equation. While the development of the particle modelling technique has been hampered in the past by the cost of computer time, today this should not be held against using a method which gives a profound physical insight into individual devices and can be used to predict the properties of devices not yet manufactured. Employed in this way it can save the developer much time and large sums of money, both important considerations for the laboratory which wants to keep abreast of the field of device research. Applying it to al ready existing electronic components may lead to novel ideas for their improvement. The Monte Carlo particle simulation technique is applicable to microelectronic components of any arbitrary shape and complexity.


Book Synopsis Monte Carlo Simulation of Semiconductor Devices by : C. Moglestue

Download or read book Monte Carlo Simulation of Semiconductor Devices written by C. Moglestue and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: Particle simulation of semiconductor devices is a rather new field which has started to catch the interest of the world's scientific community. It represents a time-continuous solution of Boltzmann's transport equation, or its quantum mechanical equivalent, and the field equation, without encountering the usual numerical problems associated with the direct solution. The technique is based on first physical principles by following in detail the transport histories of indi vidual particles and gives a profound insight into the physics of semiconductor devices. The method can be applied to devices of any geometrical complexity and material composition. It yields an accurate description of the device, which is not limited by the assumptions made behind the alternative drift diffusion and hydrodynamic models, which represent approximate solutions to the transport equation. While the development of the particle modelling technique has been hampered in the past by the cost of computer time, today this should not be held against using a method which gives a profound physical insight into individual devices and can be used to predict the properties of devices not yet manufactured. Employed in this way it can save the developer much time and large sums of money, both important considerations for the laboratory which wants to keep abreast of the field of device research. Applying it to al ready existing electronic components may lead to novel ideas for their improvement. The Monte Carlo particle simulation technique is applicable to microelectronic components of any arbitrary shape and complexity.


Semiconductor Device Modeling with Spice

Semiconductor Device Modeling with Spice

Author: Giuseppe Massabrio

Publisher: McGraw Hill Professional

Published: 1998-12-22

Total Pages: 500

ISBN-13: 9780071349550

DOWNLOAD EBOOK

Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product.


Book Synopsis Semiconductor Device Modeling with Spice by : Giuseppe Massabrio

Download or read book Semiconductor Device Modeling with Spice written by Giuseppe Massabrio and published by McGraw Hill Professional. This book was released on 1998-12-22 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product.


SEMICONDUCTOR DEVICES

SEMICONDUCTOR DEVICES

Author: NANDITA DASGUPTA

Publisher: PHI Learning Pvt. Ltd.

Published: 2004-01-01

Total Pages: 342

ISBN-13: 812032398X

DOWNLOAD EBOOK

Aimed primarily at the undergraduate students pursuing courses in semiconductor physics and semiconductor devices, this text emphasizes the physical understanding of the underlying principles of the subject. Since engineers use semiconductor devices as circuit elements, device models commonly used in the circuit simulators, e.g. SPICE, have been discussed in detail. Advanced topics such as lasers, heterojunction bipolar transistors, second order effects in BJTs, and MOSFETs are also covered. With such in-depth coverage and a practical approach, practising engineers and PG students can also use this book as a ready reference.


Book Synopsis SEMICONDUCTOR DEVICES by : NANDITA DASGUPTA

Download or read book SEMICONDUCTOR DEVICES written by NANDITA DASGUPTA and published by PHI Learning Pvt. Ltd.. This book was released on 2004-01-01 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aimed primarily at the undergraduate students pursuing courses in semiconductor physics and semiconductor devices, this text emphasizes the physical understanding of the underlying principles of the subject. Since engineers use semiconductor devices as circuit elements, device models commonly used in the circuit simulators, e.g. SPICE, have been discussed in detail. Advanced topics such as lasers, heterojunction bipolar transistors, second order effects in BJTs, and MOSFETs are also covered. With such in-depth coverage and a practical approach, practising engineers and PG students can also use this book as a ready reference.


Noise in Semiconductor Devices

Noise in Semiconductor Devices

Author: Fabrizio Bonani

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 241

ISBN-13: 3662045303

DOWNLOAD EBOOK

Provides an overview of the physical basis of noise in semiconductor devices, and a detailed treatment of numerical noise simulation in small-signal conditions. It presents innovative developments in the noise simulation of semiconductor devices operating in large-signal quasi-periodic conditions.


Book Synopsis Noise in Semiconductor Devices by : Fabrizio Bonani

Download or read book Noise in Semiconductor Devices written by Fabrizio Bonani and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides an overview of the physical basis of noise in semiconductor devices, and a detailed treatment of numerical noise simulation in small-signal conditions. It presents innovative developments in the noise simulation of semiconductor devices operating in large-signal quasi-periodic conditions.


Compound Semiconductor Device Modelling

Compound Semiconductor Device Modelling

Author: Christopher M. Snowden

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 295

ISBN-13: 1447120485

DOWNLOAD EBOOK

Compound semiconductor devices form the foundation of solid-state microwave and optoelectronic technologies used in many modern communication systems. In common with their low frequency counterparts, these devices are often represented using equivalent circuit models, but it is often necessary to resort to physical models in order to gain insight into the detailed operation of compound semiconductor devices. Many of the earliest physical models were indeed developed to understand the 'unusual' phenomena which occur at high frequencies. Such was the case with the Gunn and IMPATI diodes, which led to an increased interest in using numerical simulation methods. Contemporary devices often have feature sizes so small that they no longer operate within the familiar traditional framework, and hot electron or even quantum mechanical models are required. The need for accurate and efficient models suitable for computer aided design has increased with the demand for a wider range of integrated devices for operation at microwave, millimetre and optical frequencies. The apparent complexity of equivalent circuit and physics-based models distinguishes high frequency devices from their low frequency counterparts . . Over the past twenty years a wide range of modelling techniques have emerged suitable for describing the operation of compound semiconductor devices. This book brings together for the first time the most popular techniques in everyday use by engineers and scientists. The book specifically addresses the requirements and techniques suitable for modelling GaAs, InP. ternary and quaternary semiconductor devices found in modern technology.


Book Synopsis Compound Semiconductor Device Modelling by : Christopher M. Snowden

Download or read book Compound Semiconductor Device Modelling written by Christopher M. Snowden and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: Compound semiconductor devices form the foundation of solid-state microwave and optoelectronic technologies used in many modern communication systems. In common with their low frequency counterparts, these devices are often represented using equivalent circuit models, but it is often necessary to resort to physical models in order to gain insight into the detailed operation of compound semiconductor devices. Many of the earliest physical models were indeed developed to understand the 'unusual' phenomena which occur at high frequencies. Such was the case with the Gunn and IMPATI diodes, which led to an increased interest in using numerical simulation methods. Contemporary devices often have feature sizes so small that they no longer operate within the familiar traditional framework, and hot electron or even quantum mechanical models are required. The need for accurate and efficient models suitable for computer aided design has increased with the demand for a wider range of integrated devices for operation at microwave, millimetre and optical frequencies. The apparent complexity of equivalent circuit and physics-based models distinguishes high frequency devices from their low frequency counterparts . . Over the past twenty years a wide range of modelling techniques have emerged suitable for describing the operation of compound semiconductor devices. This book brings together for the first time the most popular techniques in everyday use by engineers and scientists. The book specifically addresses the requirements and techniques suitable for modelling GaAs, InP. ternary and quaternary semiconductor devices found in modern technology.


Semiconductor Device Modeling with SPICE

Semiconductor Device Modeling with SPICE

Author: Giuseppe Massobrio

Publisher: McGraw-Hill Professional Publishing

Published: 1993

Total Pages: 504

ISBN-13:

DOWNLOAD EBOOK

How to stimulate circuits faster and better with SPICE. Table of Contents: PN-Junction Diode And Schottky Diode; Bipolar Junction Transistor (BJT); Junction Field-Effect Transistor (JFET); The MOS Transistor; BJT Parameter Measurements; MOS Parameter Measurements; Noise and Distortion; The SPICE Program; MESFET, ISFET, And Thyrstor Devices; Appendix A: The Two-Terminal PN Structure; Appendix B: The Two-Terminal MOS Structure; Appendix C: MS Junctions; Index. 100 illustrations.


Book Synopsis Semiconductor Device Modeling with SPICE by : Giuseppe Massobrio

Download or read book Semiconductor Device Modeling with SPICE written by Giuseppe Massobrio and published by McGraw-Hill Professional Publishing. This book was released on 1993 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: How to stimulate circuits faster and better with SPICE. Table of Contents: PN-Junction Diode And Schottky Diode; Bipolar Junction Transistor (BJT); Junction Field-Effect Transistor (JFET); The MOS Transistor; BJT Parameter Measurements; MOS Parameter Measurements; Noise and Distortion; The SPICE Program; MESFET, ISFET, And Thyrstor Devices; Appendix A: The Two-Terminal PN Structure; Appendix B: The Two-Terminal MOS Structure; Appendix C: MS Junctions; Index. 100 illustrations.