Separated Flows and Jets

Separated Flows and Jets

Author: Victor V. Kozlov

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 907

ISBN-13: 3642844472

DOWNLOAD EBOOK

Separated flows and jets are closely linked in a variety of applications. They are of great importance in various fields of fluid mechanics including vehicle efficiency, technical branches concerned with gas/liquid flows, atmospheric effects on various constructions, etc. Knowledge of the physics of separated flows and jets and the development of reliable control techniques are prerequisite for future progress in the field. These aspects were in focus during the IUTAM-Symposium which was held in Novosibirsk, 9-13 July, 1990. This volume contains a selection of papers presenting recent results of theoretical and numerical studies as well as experimental work on separated flows and jets. The topics include sub- and supersonic, laminar and turbulent separation as well as organized structures in separated flows and jets. The reader will find here the state of the art and major trends for research in this field of aero-hydrodynamics.


Book Synopsis Separated Flows and Jets by : Victor V. Kozlov

Download or read book Separated Flows and Jets written by Victor V. Kozlov and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 907 pages. Available in PDF, EPUB and Kindle. Book excerpt: Separated flows and jets are closely linked in a variety of applications. They are of great importance in various fields of fluid mechanics including vehicle efficiency, technical branches concerned with gas/liquid flows, atmospheric effects on various constructions, etc. Knowledge of the physics of separated flows and jets and the development of reliable control techniques are prerequisite for future progress in the field. These aspects were in focus during the IUTAM-Symposium which was held in Novosibirsk, 9-13 July, 1990. This volume contains a selection of papers presenting recent results of theoretical and numerical studies as well as experimental work on separated flows and jets. The topics include sub- and supersonic, laminar and turbulent separation as well as organized structures in separated flows and jets. The reader will find here the state of the art and major trends for research in this field of aero-hydrodynamics.


Jets, Wakes, and Separated Flows

Jets, Wakes, and Separated Flows

Author: Ephraim Gutmark

Publisher:

Published: 2019

Total Pages:

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Jets, Wakes, and Separated Flows by : Ephraim Gutmark

Download or read book Jets, Wakes, and Separated Flows written by Ephraim Gutmark and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:


Proceedings of the 5th International Conference on Jets, Wakes and Separated Flows (ICJWSF2015)

Proceedings of the 5th International Conference on Jets, Wakes and Separated Flows (ICJWSF2015)

Author: Antonio Segalini

Publisher: Springer

Published: 2016-07-18

Total Pages: 603

ISBN-13: 3319306022

DOWNLOAD EBOOK

This volume collects various contributions from the 5th International Conference on Jets, Wakes and Separated Flows (ICJWSF2015) that took place in Stockholm during June 2015. Researchers from all around the world presented their latest results concerning fundamental and applied aspects of fluid dynamics. With its general character, the conference embraced many aspects of fluid dynamics, such as shear flows, multiphase flows and vortex flows, for instance. The structure of the present book reflects the variety of topics treated within the conference i.e. Jets, Wakes, Separated flows, Vehicle aerodynamics, Wall-bounded and confined flows, Noise, Turbomachinery flows, Multiphase and reacting flows, Vortex dynamics, Energy-related flows and a section dedicated to Numerical analyses.


Book Synopsis Proceedings of the 5th International Conference on Jets, Wakes and Separated Flows (ICJWSF2015) by : Antonio Segalini

Download or read book Proceedings of the 5th International Conference on Jets, Wakes and Separated Flows (ICJWSF2015) written by Antonio Segalini and published by Springer. This book was released on 2016-07-18 with total page 603 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume collects various contributions from the 5th International Conference on Jets, Wakes and Separated Flows (ICJWSF2015) that took place in Stockholm during June 2015. Researchers from all around the world presented their latest results concerning fundamental and applied aspects of fluid dynamics. With its general character, the conference embraced many aspects of fluid dynamics, such as shear flows, multiphase flows and vortex flows, for instance. The structure of the present book reflects the variety of topics treated within the conference i.e. Jets, Wakes, Separated flows, Vehicle aerodynamics, Wall-bounded and confined flows, Noise, Turbomachinery flows, Multiphase and reacting flows, Vortex dynamics, Energy-related flows and a section dedicated to Numerical analyses.


Theory of Jets in Ideal Fluids

Theory of Jets in Ideal Fluids

Author: M. I. Gurevich

Publisher: Academic Press

Published: 2014-05-12

Total Pages: 602

ISBN-13: 1483261751

DOWNLOAD EBOOK

Theory of Jets in Ideal Fluids focuses on the use of hydrodynamics in the theory of jets in ideal fluids. The publication first offers information on the introduction to the theory of plane and steady jet flows and flow from a vessel. Discussions focus on flow from a rectangular vessel with an orifice at a corner; vessel with a funnel-shaped bottom and Borda's nozzle; flow from the opening between two flat plates; and Kirchhoff's method. The text then examines infinite flow past a polygonal obstacle, flow around curvilinear obstacles, and flow around a body at small cavitation number. Topics include cavitating flow around a circular cylinder; cavitating flow around a thin profile at an arbitrary angle of attack; cavitating flow around a flat plate; Villat's integro-differential equation and the existence and uniqueness of the solution; and flow past a plate with the separation from its upper surface. The book takes a look at the flow of a heavy fluid and the effects of surface tension, axisymmetric flow, jet flow of compressible fluid, and unsteady flows. The publication is a dependable reference for hydrodynamicists wanting to explore the theory of jets in ideal fluids.


Book Synopsis Theory of Jets in Ideal Fluids by : M. I. Gurevich

Download or read book Theory of Jets in Ideal Fluids written by M. I. Gurevich and published by Academic Press. This book was released on 2014-05-12 with total page 602 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theory of Jets in Ideal Fluids focuses on the use of hydrodynamics in the theory of jets in ideal fluids. The publication first offers information on the introduction to the theory of plane and steady jet flows and flow from a vessel. Discussions focus on flow from a rectangular vessel with an orifice at a corner; vessel with a funnel-shaped bottom and Borda's nozzle; flow from the opening between two flat plates; and Kirchhoff's method. The text then examines infinite flow past a polygonal obstacle, flow around curvilinear obstacles, and flow around a body at small cavitation number. Topics include cavitating flow around a circular cylinder; cavitating flow around a thin profile at an arbitrary angle of attack; cavitating flow around a flat plate; Villat's integro-differential equation and the existence and uniqueness of the solution; and flow past a plate with the separation from its upper surface. The book takes a look at the flow of a heavy fluid and the effects of surface tension, axisymmetric flow, jet flow of compressible fluid, and unsteady flows. The publication is a dependable reference for hydrodynamicists wanting to explore the theory of jets in ideal fluids.


Special Issue on Jets, Wakes and Separated Flows

Special Issue on Jets, Wakes and Separated Flows

Author: Toshihiko Shakouchi

Publisher:

Published: 2006

Total Pages: 480

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Special Issue on Jets, Wakes and Separated Flows by : Toshihiko Shakouchi

Download or read book Special Issue on Jets, Wakes and Separated Flows written by Toshihiko Shakouchi and published by . This book was released on 2006 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Jets, Wakes and Separated Flows

Jets, Wakes and Separated Flows

Author: 敏彦·社河内

Publisher:

Published: 2005

Total Pages: 820

ISBN-13: 9784944068753

DOWNLOAD EBOOK


Book Synopsis Jets, Wakes and Separated Flows by : 敏彦·社河内

Download or read book Jets, Wakes and Separated Flows written by 敏彦·社河内 and published by . This book was released on 2005 with total page 820 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Development of Synthetic Jets for Enhanced Control of Separated Flows

Development of Synthetic Jets for Enhanced Control of Separated Flows

Author: M. Watson

Publisher:

Published: 2003

Total Pages:

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Development of Synthetic Jets for Enhanced Control of Separated Flows by : M. Watson

Download or read book Development of Synthetic Jets for Enhanced Control of Separated Flows written by M. Watson and published by . This book was released on 2003 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:


Instability and Control of Massively Separated Flows

Instability and Control of Massively Separated Flows

Author: Vassilis Theofilis

Publisher: Springer

Published: 2015-01-03

Total Pages: 281

ISBN-13: 3319062603

DOWNLOAD EBOOK

This book contains the outcome of the international meeting on instability, control and noise generated by massive flow separation that was organized at the Monash Center, in Prato, Italy, September 4-6, 2013. The meeting served as the final review of the EU-FP7 Instability and Control of Massively Separated Flows Marie Curie travel grant and was supported by the European Office of Aerospace Research and Development. Fifty leading specialists from twelve countries reviewed the progress made since the 50s of the last century and discussed modern analysis techniques, advanced experimental flow diagnostics and recent developments in active flow control techniques from the incompressible to the hypersonic regime. Applications involving massive flow separation and associated instability and noise generation mechanisms of interest to the aeronautical, naval and automotive industries have been addressed from a theoretical, numerical or experimental point of view, making this book a unique source containing the state-of-the-art in separated flow instability and its control.


Book Synopsis Instability and Control of Massively Separated Flows by : Vassilis Theofilis

Download or read book Instability and Control of Massively Separated Flows written by Vassilis Theofilis and published by Springer. This book was released on 2015-01-03 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the outcome of the international meeting on instability, control and noise generated by massive flow separation that was organized at the Monash Center, in Prato, Italy, September 4-6, 2013. The meeting served as the final review of the EU-FP7 Instability and Control of Massively Separated Flows Marie Curie travel grant and was supported by the European Office of Aerospace Research and Development. Fifty leading specialists from twelve countries reviewed the progress made since the 50s of the last century and discussed modern analysis techniques, advanced experimental flow diagnostics and recent developments in active flow control techniques from the incompressible to the hypersonic regime. Applications involving massive flow separation and associated instability and noise generation mechanisms of interest to the aeronautical, naval and automotive industries have been addressed from a theoretical, numerical or experimental point of view, making this book a unique source containing the state-of-the-art in separated flow instability and its control.


Flow Separation Control for Cylinder Flow and Cascade Flow Using Vortex Generator Jets

Flow Separation Control for Cylinder Flow and Cascade Flow Using Vortex Generator Jets

Author:

Publisher:

Published: 2006

Total Pages: 119

ISBN-13:

DOWNLOAD EBOOK

Many attempts have been made by researchers, worldwide, to comprehend the physics of separated flows. Study of flow separation is vital as it is encountered in many engineering applications, and is generally detrimental. One such example is flow through a low pressure turbine (LPT) cascade, at relatively low-Re values, where flow separates on the suction surface of the LPT blade, and adversely affects the efficiency of the aircraft engine. Contemporary research is focused on understanding the physics of the separated flow, and identifying control strategies to delay or, if possible at all, prevent the flow separation phenomenon. The main objective of the present research is to study a model separated flow, and identify a control strategy, which can subsequently be applied to manage the flow in the LPT cascade. To achieve this, a model problem of flow past a circular cylinder is considered, as the geometry for this flow is simple and facilitates a focus on the flow itself. Despite of its simple geometry, the flow past a circular cylinder exhibits a variety of complex flow features which make this a challenging problem to solve. As a validation study, the flow for Re = 3,900 is simulated, and the results obtained are compared with the numerical and experimental data available in the literature. For the flow control study, a baseline solution for flow past a circular cylinder at Re = 13,400 is obtained as a first step towards implementation of flow separation control for preventing or delaying the flow separation. The Re value of 13,400 ensures laminar separation and serves to approximate the flow conditions prevailing in a LPT cascade. Later, flow control is incorporated by employing vortex generator jets (VGJs) on the upper surface of the cylinder at about 750 from the stagnation point. The jets are issued into the flow with a blowing ratio of 2.0 and are pitched and skewed by 300 and 700, respectively. A non-dimensional pulsation frequency F+ of 1.0 is used, along with 50% duty cycle. With this understanding, VGJs are then incorporated for the LPT cascade flow. VGJs are placed in a range of 63.5% to 67% Cax. All the jet parameters, i.e., blowing ratio, pitch angle, skew angle and duty cycle ratio, are kept the same as for the cylinder case, while the F+ value of 2.33 is employed for the LPT cascade problem. The three-dimensional, unsteady, full Navier-Stokes equations are solved to obtain accurate prediction of unsteady separated flows governed by the Navier-Stokes (N-S) equations. A fourth-order accurate, compact-difference scheme is used for spatial discretization, with sixth-order filtering to minimize the oscillations in the flow solution. For the cylinder, a multi-block structured grid generated using the grid generation software, GRIDGEN, is used for the present numerical analysis. The grid contains approximately 3.9M grid points, and approximately 70% of the total grid points are concentrated in the wake region to capture the small scales that are expected to exist in this region. A MPI-based higher-order, Chimera version of the FDL3DI flow solver developed by the Air Force Research Laboratory at Wright Patterson Air Force base is used for the numerical computations. PEGSUS a NASA Ames research code is used for storing the connectivity data at the block interfaces. The baseline case for the cylinder flow at Re = 13,400 displays a wide range of vortical structures in the wake region. The separating shear layers are subject to spanwise instability which leads to the formation of an unsteady and three-dimensional wake, with the characteristic features of typical turbulent flow. It is observed that after the jets are being turned on, the pressure on the surface of the cylinder redistributes in a way so as to reduce the pressure drag significantly. The total pressure loss coefficient and momentum thickness are calculated in the wake at x/D = 3.0 and x/D = 5.0, and are found to reduce by 10% and 30%, respectively. The flow control simulation for the LPT cascade flow reveals 27% reduction in total pressure loss coefficient, along with the total elimination of separation upon application of VGJs.


Book Synopsis Flow Separation Control for Cylinder Flow and Cascade Flow Using Vortex Generator Jets by :

Download or read book Flow Separation Control for Cylinder Flow and Cascade Flow Using Vortex Generator Jets written by and published by . This book was released on 2006 with total page 119 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many attempts have been made by researchers, worldwide, to comprehend the physics of separated flows. Study of flow separation is vital as it is encountered in many engineering applications, and is generally detrimental. One such example is flow through a low pressure turbine (LPT) cascade, at relatively low-Re values, where flow separates on the suction surface of the LPT blade, and adversely affects the efficiency of the aircraft engine. Contemporary research is focused on understanding the physics of the separated flow, and identifying control strategies to delay or, if possible at all, prevent the flow separation phenomenon. The main objective of the present research is to study a model separated flow, and identify a control strategy, which can subsequently be applied to manage the flow in the LPT cascade. To achieve this, a model problem of flow past a circular cylinder is considered, as the geometry for this flow is simple and facilitates a focus on the flow itself. Despite of its simple geometry, the flow past a circular cylinder exhibits a variety of complex flow features which make this a challenging problem to solve. As a validation study, the flow for Re = 3,900 is simulated, and the results obtained are compared with the numerical and experimental data available in the literature. For the flow control study, a baseline solution for flow past a circular cylinder at Re = 13,400 is obtained as a first step towards implementation of flow separation control for preventing or delaying the flow separation. The Re value of 13,400 ensures laminar separation and serves to approximate the flow conditions prevailing in a LPT cascade. Later, flow control is incorporated by employing vortex generator jets (VGJs) on the upper surface of the cylinder at about 750 from the stagnation point. The jets are issued into the flow with a blowing ratio of 2.0 and are pitched and skewed by 300 and 700, respectively. A non-dimensional pulsation frequency F+ of 1.0 is used, along with 50% duty cycle. With this understanding, VGJs are then incorporated for the LPT cascade flow. VGJs are placed in a range of 63.5% to 67% Cax. All the jet parameters, i.e., blowing ratio, pitch angle, skew angle and duty cycle ratio, are kept the same as for the cylinder case, while the F+ value of 2.33 is employed for the LPT cascade problem. The three-dimensional, unsteady, full Navier-Stokes equations are solved to obtain accurate prediction of unsteady separated flows governed by the Navier-Stokes (N-S) equations. A fourth-order accurate, compact-difference scheme is used for spatial discretization, with sixth-order filtering to minimize the oscillations in the flow solution. For the cylinder, a multi-block structured grid generated using the grid generation software, GRIDGEN, is used for the present numerical analysis. The grid contains approximately 3.9M grid points, and approximately 70% of the total grid points are concentrated in the wake region to capture the small scales that are expected to exist in this region. A MPI-based higher-order, Chimera version of the FDL3DI flow solver developed by the Air Force Research Laboratory at Wright Patterson Air Force base is used for the numerical computations. PEGSUS a NASA Ames research code is used for storing the connectivity data at the block interfaces. The baseline case for the cylinder flow at Re = 13,400 displays a wide range of vortical structures in the wake region. The separating shear layers are subject to spanwise instability which leads to the formation of an unsteady and three-dimensional wake, with the characteristic features of typical turbulent flow. It is observed that after the jets are being turned on, the pressure on the surface of the cylinder redistributes in a way so as to reduce the pressure drag significantly. The total pressure loss coefficient and momentum thickness are calculated in the wake at x/D = 3.0 and x/D = 5.0, and are found to reduce by 10% and 30%, respectively. The flow control simulation for the LPT cascade flow reveals 27% reduction in total pressure loss coefficient, along with the total elimination of separation upon application of VGJs.


IUTAM Symposium on Unsteady Separated Flows and their Control

IUTAM Symposium on Unsteady Separated Flows and their Control

Author: Marianna Braza

Publisher: Springer Science & Business Media

Published: 2009-09-29

Total Pages: 588

ISBN-13: 1402098987

DOWNLOAD EBOOK

This Volume is the Proceedings of the IUTAM Symposium on Unsteady Separated Flows and Their Control held in Corfu, Greece, 18–22 June 2007. This was the second IUTAM Symposium on this subject, following the symposium in Toulouse, in April 2002. The Symposium consisted of single plenary sessions with invited lectures, - lected oral presentations, discussions on special topics and posters. The complete set of papers was provided to all participants at the meeting. The thematic sessions of this Symposium are presented in the following: Experimental techniques for the unsteady ow separation Theoretical aspects and analytical approaches of ow separation Instability and transition Compressibility effects related to unsteady separation Statistical and hybrid turbulence modelling for unsteady separated ows Direct and Large-Eddy Simulation of unsteady separated ows Theoretical/industrial aspects of unsteady separated ow control This IUTAM Symposium concerned an important domain of Theoretical and Applied Mechanics nowadays. It focused on the problem of ow separation and of its control. It achieved a uni ed approach regrouping the knowledge provided from theoretical, experimental, numerical simulation and modelling aspects for unsteady separated ows (incompressible and compressible regimes) and included ef cient control devices to achieve attenuation or suppression of separation. The subject - eas covered important themes in the domain of fundamental research as well as in the domain of applications.


Book Synopsis IUTAM Symposium on Unsteady Separated Flows and their Control by : Marianna Braza

Download or read book IUTAM Symposium on Unsteady Separated Flows and their Control written by Marianna Braza and published by Springer Science & Business Media. This book was released on 2009-09-29 with total page 588 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Volume is the Proceedings of the IUTAM Symposium on Unsteady Separated Flows and Their Control held in Corfu, Greece, 18–22 June 2007. This was the second IUTAM Symposium on this subject, following the symposium in Toulouse, in April 2002. The Symposium consisted of single plenary sessions with invited lectures, - lected oral presentations, discussions on special topics and posters. The complete set of papers was provided to all participants at the meeting. The thematic sessions of this Symposium are presented in the following: Experimental techniques for the unsteady ow separation Theoretical aspects and analytical approaches of ow separation Instability and transition Compressibility effects related to unsteady separation Statistical and hybrid turbulence modelling for unsteady separated ows Direct and Large-Eddy Simulation of unsteady separated ows Theoretical/industrial aspects of unsteady separated ow control This IUTAM Symposium concerned an important domain of Theoretical and Applied Mechanics nowadays. It focused on the problem of ow separation and of its control. It achieved a uni ed approach regrouping the knowledge provided from theoretical, experimental, numerical simulation and modelling aspects for unsteady separated ows (incompressible and compressible regimes) and included ef cient control devices to achieve attenuation or suppression of separation. The subject - eas covered important themes in the domain of fundamental research as well as in the domain of applications.