Software Development for Embedded Multi-core Systems

Software Development for Embedded Multi-core Systems

Author: Max Domeika

Publisher: Newnes

Published: 2011-04-08

Total Pages: 440

ISBN-13: 9780080558585

DOWNLOAD EBOOK

The multicore revolution has reached the deployment stage in embedded systems ranging from small ultramobile devices to large telecommunication servers. The transition from single to multicore processors, motivated by the need to increase performance while conserving power, has placed great responsibility on the shoulders of software engineers. In this new embedded multicore era, the toughest task is the development of code to support more sophisticated systems. This book provides embedded engineers with solid grounding in the skills required to develop software targeting multicore processors. Within the text, the author undertakes an in-depth exploration of performance analysis, and a close-up look at the tools of the trade. Both general multicore design principles and processor-specific optimization techniques are revealed. Detailed coverage of critical issues for multicore employment within embedded systems is provided, including the Threading Development Cycle, with discussions of analysis, design, development, debugging, and performance tuning of threaded applications. Software development techniques engendering optimal mobility and energy efficiency are highlighted through multiple case studies, which provide practical “how-to advice on implementing the latest multicore processors. Finally, future trends are discussed, including terascale, speculative multithreading, transactional memory, interconnects, and the software-specific implications of these looming architectural developments. Table of Contents Chapter 1 - Introduction Chapter 2 – Basic System and Processor Architecture Chapter 3 – Multi-core Processors & Embedded Chapter 4 –Moving To Multi-core Intel Architecture Chapter 5 – Scalar Optimization & Usability Chapter 6 – Parallel Optimization Using Threads Chapter 7 - Case Study: Data Decomposition Chapter 8 - Case Study: Functional Decomposition Chapter 9 – Virtualization & Partitioning Chapter 10 – Getting Ready For Low Power Intel Architecture Chapter 11 - Summary, Trends, and Conclusions Appendix I Glossary References *This is the only book to explain software optimization for embedded multi-core systems *Helpful tips, tricks and design secrets from an Intel programming expert, with detailed examples using the popular X86 architecture *Covers hot topics, including ultramobile devices, low-power designs, Pthreads vs. OpenMP, and heterogeneous cores


Book Synopsis Software Development for Embedded Multi-core Systems by : Max Domeika

Download or read book Software Development for Embedded Multi-core Systems written by Max Domeika and published by Newnes. This book was released on 2011-04-08 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: The multicore revolution has reached the deployment stage in embedded systems ranging from small ultramobile devices to large telecommunication servers. The transition from single to multicore processors, motivated by the need to increase performance while conserving power, has placed great responsibility on the shoulders of software engineers. In this new embedded multicore era, the toughest task is the development of code to support more sophisticated systems. This book provides embedded engineers with solid grounding in the skills required to develop software targeting multicore processors. Within the text, the author undertakes an in-depth exploration of performance analysis, and a close-up look at the tools of the trade. Both general multicore design principles and processor-specific optimization techniques are revealed. Detailed coverage of critical issues for multicore employment within embedded systems is provided, including the Threading Development Cycle, with discussions of analysis, design, development, debugging, and performance tuning of threaded applications. Software development techniques engendering optimal mobility and energy efficiency are highlighted through multiple case studies, which provide practical “how-to advice on implementing the latest multicore processors. Finally, future trends are discussed, including terascale, speculative multithreading, transactional memory, interconnects, and the software-specific implications of these looming architectural developments. Table of Contents Chapter 1 - Introduction Chapter 2 – Basic System and Processor Architecture Chapter 3 – Multi-core Processors & Embedded Chapter 4 –Moving To Multi-core Intel Architecture Chapter 5 – Scalar Optimization & Usability Chapter 6 – Parallel Optimization Using Threads Chapter 7 - Case Study: Data Decomposition Chapter 8 - Case Study: Functional Decomposition Chapter 9 – Virtualization & Partitioning Chapter 10 – Getting Ready For Low Power Intel Architecture Chapter 11 - Summary, Trends, and Conclusions Appendix I Glossary References *This is the only book to explain software optimization for embedded multi-core systems *Helpful tips, tricks and design secrets from an Intel programming expert, with detailed examples using the popular X86 architecture *Covers hot topics, including ultramobile devices, low-power designs, Pthreads vs. OpenMP, and heterogeneous cores


Software Development for Embedded Multi-core Systems

Software Development for Embedded Multi-core Systems

Author: Max Domeika

Publisher:

Published: 2011

Total Pages: 440

ISBN-13:

DOWNLOAD EBOOK

The multicore revolution has reached the deployment stage in embedded systems ranging from small ultramobile devices to large telecommunication servers. The transition from single to multicore processors, motivated by the need to increase performance while conserving power, has placed great responsibility on the shoulders of software engineers. In this new embedded multicore era, the toughest task is the development of code to support more sophisticated systems. This book provides embedded engineers with solid grounding in the skills required to develop software targeting multicore processors. Within the text, the author undertakes an in-depth exploration of performance analysis, and a close-up look at the tools of the trade. Both general multicore design principles and processor-specific optimization techniques are revealed. Detailed coverage of critical issues for multicore employment within embedded systems is provided, including the Threading Development Cycle, with discussions of analysis, design, development, debugging, and performance tuning of threaded applications. Software development techniques engendering optimal mobility and energy efficiency are highlighted through multiple case studies, which provide practical 'how-to' advice on implementing the latest multicore processors. Finally, future trends are discussed, including terascale, speculative multithreading, transactional memory, interconnects, and the software-specific implications of these looming architectural developments. Table of Contents Chapter 1 - Introduction Chapter 2 - Basic System and Processor Architecture Chapter 3 - Multi-core Processors & Embedded Chapter 4 -Moving To Multi-core Intel Architecture Chapter 5 - Scalar Optimization & Usability Chapter 6 - Parallel Optimization Using Threads Chapter 7 - Case Study: Data Decomposition Chapter 8 - Case Study: Functional Decomposition Chapter 9 - Virtualization & Partitioning Chapter 10 - Getting Ready For Low Power Intel Architecture Chapter 11 - Summary, Trends, and Conclusions Appendix I Glossary References *This is the only book to explain software optimization for embedded multi-core systems *Helpful tips, tricks and design secrets from an Intel programming expert, with detailed examples using the popular X86 architecture *Covers hot topics, including ultramobile devices, low-power designs, Pthreads vs. OpenMP, and heterogeneous cores.


Book Synopsis Software Development for Embedded Multi-core Systems by : Max Domeika

Download or read book Software Development for Embedded Multi-core Systems written by Max Domeika and published by . This book was released on 2011 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: The multicore revolution has reached the deployment stage in embedded systems ranging from small ultramobile devices to large telecommunication servers. The transition from single to multicore processors, motivated by the need to increase performance while conserving power, has placed great responsibility on the shoulders of software engineers. In this new embedded multicore era, the toughest task is the development of code to support more sophisticated systems. This book provides embedded engineers with solid grounding in the skills required to develop software targeting multicore processors. Within the text, the author undertakes an in-depth exploration of performance analysis, and a close-up look at the tools of the trade. Both general multicore design principles and processor-specific optimization techniques are revealed. Detailed coverage of critical issues for multicore employment within embedded systems is provided, including the Threading Development Cycle, with discussions of analysis, design, development, debugging, and performance tuning of threaded applications. Software development techniques engendering optimal mobility and energy efficiency are highlighted through multiple case studies, which provide practical 'how-to' advice on implementing the latest multicore processors. Finally, future trends are discussed, including terascale, speculative multithreading, transactional memory, interconnects, and the software-specific implications of these looming architectural developments. Table of Contents Chapter 1 - Introduction Chapter 2 - Basic System and Processor Architecture Chapter 3 - Multi-core Processors & Embedded Chapter 4 -Moving To Multi-core Intel Architecture Chapter 5 - Scalar Optimization & Usability Chapter 6 - Parallel Optimization Using Threads Chapter 7 - Case Study: Data Decomposition Chapter 8 - Case Study: Functional Decomposition Chapter 9 - Virtualization & Partitioning Chapter 10 - Getting Ready For Low Power Intel Architecture Chapter 11 - Summary, Trends, and Conclusions Appendix I Glossary References *This is the only book to explain software optimization for embedded multi-core systems *Helpful tips, tricks and design secrets from an Intel programming expert, with detailed examples using the popular X86 architecture *Covers hot topics, including ultramobile devices, low-power designs, Pthreads vs. OpenMP, and heterogeneous cores.


Real-Time Systems Development with RTEMS and Multicore Processors

Real-Time Systems Development with RTEMS and Multicore Processors

Author: Gedare Bloom

Publisher: CRC Press

Published: 2020-11-23

Total Pages: 535

ISBN-13: 1351255770

DOWNLOAD EBOOK

The proliferation of multicore processors in the embedded market for Internet-of-Things (IoT) and Cyber-Physical Systems (CPS) makes developing real-time embedded applications increasingly difficult. What is the underlying theory that makes multicore real-time possible? How does theory influence application design? When is a real-time operating system (RTOS) useful? What RTOS features do applications need? How does a mature RTOS help manage the complexity of multicore hardware? Real-Time Systems Development with RTEMS and Multicore Processors answers these questions and more with exemplar Real-Time Executive for Multiprocessor Systems (RTEMS) RTOS to provide concrete advice and examples for constructing useful, feature-rich applications. RTEMS is free, open-source software that supports multi-processor systems for over a dozen CPU architectures and over 150 specific system boards in applications spanning the range of IoT and CPS domains such as satellites, particle accelerators, robots, racing motorcycles, building controls, medical devices, and more. The focus of this book is on enabling real-time embedded software engineering while providing sufficient theoretical foundations and hardware background to understand the rationale for key decisions in RTOS and application design and implementation. The topics covered in this book include: Cross-compilation for embedded systems development Concurrent programming models used in real-time embedded software Real-time scheduling theory and algorithms used in wide practice Usage and comparison of two application programmer interfaces (APIs) in real-time embedded software: POSIX and the RTEMS Classic APIs Design and implementation in RTEMS of commonly found RTOS features for schedulers, task management, time-keeping, inter-task synchronization, inter-task communication, and networking The challenges introduced by multicore hardware, advances in multicore real-time theory, and software engineering multicore real-time systems with RTEMS All the authors of this book are experts in the academic field of real-time embedded systems. Two of the authors are primary open-source maintainers of the RTEMS software project.


Book Synopsis Real-Time Systems Development with RTEMS and Multicore Processors by : Gedare Bloom

Download or read book Real-Time Systems Development with RTEMS and Multicore Processors written by Gedare Bloom and published by CRC Press. This book was released on 2020-11-23 with total page 535 pages. Available in PDF, EPUB and Kindle. Book excerpt: The proliferation of multicore processors in the embedded market for Internet-of-Things (IoT) and Cyber-Physical Systems (CPS) makes developing real-time embedded applications increasingly difficult. What is the underlying theory that makes multicore real-time possible? How does theory influence application design? When is a real-time operating system (RTOS) useful? What RTOS features do applications need? How does a mature RTOS help manage the complexity of multicore hardware? Real-Time Systems Development with RTEMS and Multicore Processors answers these questions and more with exemplar Real-Time Executive for Multiprocessor Systems (RTEMS) RTOS to provide concrete advice and examples for constructing useful, feature-rich applications. RTEMS is free, open-source software that supports multi-processor systems for over a dozen CPU architectures and over 150 specific system boards in applications spanning the range of IoT and CPS domains such as satellites, particle accelerators, robots, racing motorcycles, building controls, medical devices, and more. The focus of this book is on enabling real-time embedded software engineering while providing sufficient theoretical foundations and hardware background to understand the rationale for key decisions in RTOS and application design and implementation. The topics covered in this book include: Cross-compilation for embedded systems development Concurrent programming models used in real-time embedded software Real-time scheduling theory and algorithms used in wide practice Usage and comparison of two application programmer interfaces (APIs) in real-time embedded software: POSIX and the RTEMS Classic APIs Design and implementation in RTEMS of commonly found RTOS features for schedulers, task management, time-keeping, inter-task synchronization, inter-task communication, and networking The challenges introduced by multicore hardware, advances in multicore real-time theory, and software engineering multicore real-time systems with RTEMS All the authors of this book are experts in the academic field of real-time embedded systems. Two of the authors are primary open-source maintainers of the RTEMS software project.


Real World Multicore Embedded Systems

Real World Multicore Embedded Systems

Author: Kenn Luecke

Publisher: Elsevier Inc. Chapters

Published: 2013-02-27

Total Pages: 648

ISBN-13: 0128073446

DOWNLOAD EBOOK

Efficient software development requires adequate toolsets to assist the developer in analyzing and optimizing a software application’s performance. With the relatively recent advent of multicore embedded hardware platforms, toolsets for supporting multicore development have appeared, although, in some cases, capabilities may be missing or immature, leaving software developers to manually massage outputs from one tool into inputs for the next tool or struggling to investigate unexpected multicore behaviors. This section reviews those multicore tools currently available for software developers as well as those that are still needed for adequate support.


Book Synopsis Real World Multicore Embedded Systems by : Kenn Luecke

Download or read book Real World Multicore Embedded Systems written by Kenn Luecke and published by Elsevier Inc. Chapters. This book was released on 2013-02-27 with total page 648 pages. Available in PDF, EPUB and Kindle. Book excerpt: Efficient software development requires adequate toolsets to assist the developer in analyzing and optimizing a software application’s performance. With the relatively recent advent of multicore embedded hardware platforms, toolsets for supporting multicore development have appeared, although, in some cases, capabilities may be missing or immature, leaving software developers to manually massage outputs from one tool into inputs for the next tool or struggling to investigate unexpected multicore behaviors. This section reviews those multicore tools currently available for software developers as well as those that are still needed for adequate support.


Software Engineering for Embedded Systems

Software Engineering for Embedded Systems

Author: Robert Oshana

Publisher: Newnes

Published: 2013-04-01

Total Pages: 1201

ISBN-13: 0124159419

DOWNLOAD EBOOK

This Expert Guide gives you the techniques and technologies in software engineering to optimally design and implement your embedded system. Written by experts with a solutions focus, this encyclopedic reference gives you an indispensable aid to tackling the day-to-day problems when using software engineering methods to develop your embedded systems. With this book you will learn: The principles of good architecture for an embedded system Design practices to help make your embedded project successful Details on principles that are often a part of embedded systems, including digital signal processing, safety-critical principles, and development processes Techniques for setting up a performance engineering strategy for your embedded system software How to develop user interfaces for embedded systems Strategies for testing and deploying your embedded system, and ensuring quality development processes Practical techniques for optimizing embedded software for performance, memory, and power Advanced guidelines for developing multicore software for embedded systems How to develop embedded software for networking, storage, and automotive segments How to manage the embedded development process Includes contributions from: Frank Schirrmeister, Shelly Gretlein, Bruce Douglass, Erich Styger, Gary Stringham, Jean Labrosse, Jim Trudeau, Mike Brogioli, Mark Pitchford, Catalin Dan Udma, Markus Levy, Pete Wilson, Whit Waldo, Inga Harris, Xinxin Yang, Srinivasa Addepalli, Andrew McKay, Mark Kraeling and Robert Oshana. Road map of key problems/issues and references to their solution in the text Review of core methods in the context of how to apply them Examples demonstrating timeless implementation details Short and to- the- point case studies show how key ideas can be implemented, the rationale for choices made, and design guidelines and trade-offs


Book Synopsis Software Engineering for Embedded Systems by : Robert Oshana

Download or read book Software Engineering for Embedded Systems written by Robert Oshana and published by Newnes. This book was released on 2013-04-01 with total page 1201 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Expert Guide gives you the techniques and technologies in software engineering to optimally design and implement your embedded system. Written by experts with a solutions focus, this encyclopedic reference gives you an indispensable aid to tackling the day-to-day problems when using software engineering methods to develop your embedded systems. With this book you will learn: The principles of good architecture for an embedded system Design practices to help make your embedded project successful Details on principles that are often a part of embedded systems, including digital signal processing, safety-critical principles, and development processes Techniques for setting up a performance engineering strategy for your embedded system software How to develop user interfaces for embedded systems Strategies for testing and deploying your embedded system, and ensuring quality development processes Practical techniques for optimizing embedded software for performance, memory, and power Advanced guidelines for developing multicore software for embedded systems How to develop embedded software for networking, storage, and automotive segments How to manage the embedded development process Includes contributions from: Frank Schirrmeister, Shelly Gretlein, Bruce Douglass, Erich Styger, Gary Stringham, Jean Labrosse, Jim Trudeau, Mike Brogioli, Mark Pitchford, Catalin Dan Udma, Markus Levy, Pete Wilson, Whit Waldo, Inga Harris, Xinxin Yang, Srinivasa Addepalli, Andrew McKay, Mark Kraeling and Robert Oshana. Road map of key problems/issues and references to their solution in the text Review of core methods in the context of how to apply them Examples demonstrating timeless implementation details Short and to- the- point case studies show how key ideas can be implemented, the rationale for choices made, and design guidelines and trade-offs


Multi-Core Embedded Systems

Multi-Core Embedded Systems

Author: Georgios Kornaros

Publisher: CRC Press

Published: 2018-10-08

Total Pages: 502

ISBN-13: 1439811628

DOWNLOAD EBOOK

Details a real-world product that applies a cutting-edge multi-core architecture Increasingly demanding modern applications—such as those used in telecommunications networking and real-time processing of audio, video, and multimedia streams—require multiple processors to achieve computational performance at the rate of a few giga-operations per second. This necessity for speed and manageable power consumption makes it likely that the next generation of embedded processing systems will include hundreds of cores, while being increasingly programmable, blending processors and configurable hardware in a power-efficient manner. Multi-Core Embedded Systems presents a variety of perspectives that elucidate the technical challenges associated with such increased integration of homogeneous (processors) and heterogeneous multiple cores. It offers an analysis that industry engineers and professionals will need to understand the physical details of both software and hardware in embedded architectures, as well as their limitations and potential for future growth. Discusses the available programming models spread across different abstraction levels The book begins with an overview of the evolution of multiprocessor architectures for embedded applications and discusses techniques for autonomous power management of system-level parameters. It addresses the use of existing open-source (and free) tools originating from several application domains—such as traffic modeling, graph theory, parallel computing and network simulation. In addition, the authors cover other important topics associated with multi-core embedded systems, such as: Architectures and interconnects Embedded design methodologies Mapping of applications


Book Synopsis Multi-Core Embedded Systems by : Georgios Kornaros

Download or read book Multi-Core Embedded Systems written by Georgios Kornaros and published by CRC Press. This book was released on 2018-10-08 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: Details a real-world product that applies a cutting-edge multi-core architecture Increasingly demanding modern applications—such as those used in telecommunications networking and real-time processing of audio, video, and multimedia streams—require multiple processors to achieve computational performance at the rate of a few giga-operations per second. This necessity for speed and manageable power consumption makes it likely that the next generation of embedded processing systems will include hundreds of cores, while being increasingly programmable, blending processors and configurable hardware in a power-efficient manner. Multi-Core Embedded Systems presents a variety of perspectives that elucidate the technical challenges associated with such increased integration of homogeneous (processors) and heterogeneous multiple cores. It offers an analysis that industry engineers and professionals will need to understand the physical details of both software and hardware in embedded architectures, as well as their limitations and potential for future growth. Discusses the available programming models spread across different abstraction levels The book begins with an overview of the evolution of multiprocessor architectures for embedded applications and discusses techniques for autonomous power management of system-level parameters. It addresses the use of existing open-source (and free) tools originating from several application domains—such as traffic modeling, graph theory, parallel computing and network simulation. In addition, the authors cover other important topics associated with multi-core embedded systems, such as: Architectures and interconnects Embedded design methodologies Mapping of applications


Multicore Systems On-Chip: Practical Software/Hardware Design

Multicore Systems On-Chip: Practical Software/Hardware Design

Author: Abderazek Ben Abdallah

Publisher: Springer Science & Business Media

Published: 2013-07-20

Total Pages: 291

ISBN-13: 9491216929

DOWNLOAD EBOOK

System on chips designs have evolved from fairly simple unicore, single memory designs to complex heterogeneous multicore SoC architectures consisting of a large number of IP blocks on the same silicon. To meet high computational demands posed by latest consumer electronic devices, most current systems are based on such paradigm, which represents a real revolution in many aspects in computing. The attraction of multicore processing for power reduction is compelling. By splitting a set of tasks among multiple processor cores, the operating frequency necessary for each core can be reduced, allowing to reduce the voltage on each core. Because dynamic power is proportional to the frequency and to the square of the voltage, we get a big gain, even though we may have more cores running. As more and more cores are integrated into these designs to share the ever increasing processing load, the main challenges lie in efficient memory hierarchy, scalable system interconnect, new programming paradigms, and efficient integration methodology for connecting such heterogeneous cores into a single system capable of leveraging their individual flexibility. Current design methods tend toward mixed HW/SW co-designs targeting multicore systems on-chip for specific applications. To decide on the lowest cost mix of cores, designers must iteratively map the device’s functionality to a particular HW/SW partition and target architectures. In addition, to connect the heterogeneous cores, the architecture requires high performance complex communication architectures and efficient communication protocols, such as hierarchical bus, point-to-point connection, or Network-on-Chip. Software development also becomes far more complex due to the difficulties in breaking a single processing task into multiple parts that can be processed separately and then reassembled later. This reflects the fact that certain processor jobs cannot be easily parallelized to run concurrently on multiple processing cores and that load balancing between processing cores – especially heterogeneous cores – is very difficult.


Book Synopsis Multicore Systems On-Chip: Practical Software/Hardware Design by : Abderazek Ben Abdallah

Download or read book Multicore Systems On-Chip: Practical Software/Hardware Design written by Abderazek Ben Abdallah and published by Springer Science & Business Media. This book was released on 2013-07-20 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: System on chips designs have evolved from fairly simple unicore, single memory designs to complex heterogeneous multicore SoC architectures consisting of a large number of IP blocks on the same silicon. To meet high computational demands posed by latest consumer electronic devices, most current systems are based on such paradigm, which represents a real revolution in many aspects in computing. The attraction of multicore processing for power reduction is compelling. By splitting a set of tasks among multiple processor cores, the operating frequency necessary for each core can be reduced, allowing to reduce the voltage on each core. Because dynamic power is proportional to the frequency and to the square of the voltage, we get a big gain, even though we may have more cores running. As more and more cores are integrated into these designs to share the ever increasing processing load, the main challenges lie in efficient memory hierarchy, scalable system interconnect, new programming paradigms, and efficient integration methodology for connecting such heterogeneous cores into a single system capable of leveraging their individual flexibility. Current design methods tend toward mixed HW/SW co-designs targeting multicore systems on-chip for specific applications. To decide on the lowest cost mix of cores, designers must iteratively map the device’s functionality to a particular HW/SW partition and target architectures. In addition, to connect the heterogeneous cores, the architecture requires high performance complex communication architectures and efficient communication protocols, such as hierarchical bus, point-to-point connection, or Network-on-Chip. Software development also becomes far more complex due to the difficulties in breaking a single processing task into multiple parts that can be processed separately and then reassembled later. This reflects the fact that certain processor jobs cannot be easily parallelized to run concurrently on multiple processing cores and that load balancing between processing cores – especially heterogeneous cores – is very difficult.


Smart Multicore Embedded Systems

Smart Multicore Embedded Systems

Author: Massimo Torquati

Publisher: Springer Science & Business Media

Published: 2013-11-09

Total Pages: 194

ISBN-13: 1461488001

DOWNLOAD EBOOK

This book provides a single-source reference to the state-of-the-art of high-level programming models and compilation tool-chains for embedded system platforms. The authors address challenges faced by programmers developing software to implement parallel applications in embedded systems, where very often they are forced to rewrite sequential programs into parallel software, taking into account all the low level features and peculiarities of the underlying platforms. Readers will benefit from these authors’ approach, which takes into account both the application requirements and the platform specificities of various embedded systems from different industries. Parallel programming tool-chains are described that take as input parameters both the application and the platform model, then determine relevant transformations and mapping decisions on the concrete platform, minimizing user intervention and hiding the difficulties related to the correct and efficient use of memory hierarchy and low level code generation.


Book Synopsis Smart Multicore Embedded Systems by : Massimo Torquati

Download or read book Smart Multicore Embedded Systems written by Massimo Torquati and published by Springer Science & Business Media. This book was released on 2013-11-09 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a single-source reference to the state-of-the-art of high-level programming models and compilation tool-chains for embedded system platforms. The authors address challenges faced by programmers developing software to implement parallel applications in embedded systems, where very often they are forced to rewrite sequential programs into parallel software, taking into account all the low level features and peculiarities of the underlying platforms. Readers will benefit from these authors’ approach, which takes into account both the application requirements and the platform specificities of various embedded systems from different industries. Parallel programming tool-chains are described that take as input parameters both the application and the platform model, then determine relevant transformations and mapping decisions on the concrete platform, minimizing user intervention and hiding the difficulties related to the correct and efficient use of memory hierarchy and low level code generation.


Advanced Multicore Systems-On-Chip

Advanced Multicore Systems-On-Chip

Author: Abderazek Ben Abdallah

Publisher: Springer

Published: 2017-09-10

Total Pages: 273

ISBN-13: 9811060924

DOWNLOAD EBOOK

From basic architecture, interconnection, and parallelization to power optimization, this book provides a comprehensive description of emerging multicore systems-on-chip (MCSoCs) hardware and software design. Highlighting both fundamentals and advanced software and hardware design, it can serve as a primary textbook for advanced courses in MCSoCs design and embedded systems. The first three chapters introduce MCSoCs architectures, present design challenges and conventional design methods, and describe in detail the main building blocks of MCSoCs. Chapters 4, 5, and 6 discuss fundamental and advanced on-chip interconnection network technologies for multi and many core SoCs, enabling readers to understand the microarchitectures for on-chip routers and network interfaces that are essential in the context of latency, area, and power constraints. With the rise of multicore and many-core systems, concurrency is becoming a major issue in the daily life of a programmer. Thus, compiler and software development tools are critical in helping programmers create high-performance software. Programmers should make sure that their parallelized program codes will not cause race condition, memory-access deadlocks, or other faults that may crash their entire systems. As such, Chapter 7 describes a novel parallelizing compiler design for high-performance computing. Chapter 8 provides a detailed investigation of power reduction techniques for MCSoCs at component and network levels. It discusses energy conservation in general hardware design, and also in embedded multicore system components, such as CPUs, disks, displays and memories. Lastly, Chapter 9 presents a real embedded MCSoCs system design targeted for health monitoring in the elderly.


Book Synopsis Advanced Multicore Systems-On-Chip by : Abderazek Ben Abdallah

Download or read book Advanced Multicore Systems-On-Chip written by Abderazek Ben Abdallah and published by Springer. This book was released on 2017-09-10 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: From basic architecture, interconnection, and parallelization to power optimization, this book provides a comprehensive description of emerging multicore systems-on-chip (MCSoCs) hardware and software design. Highlighting both fundamentals and advanced software and hardware design, it can serve as a primary textbook for advanced courses in MCSoCs design and embedded systems. The first three chapters introduce MCSoCs architectures, present design challenges and conventional design methods, and describe in detail the main building blocks of MCSoCs. Chapters 4, 5, and 6 discuss fundamental and advanced on-chip interconnection network technologies for multi and many core SoCs, enabling readers to understand the microarchitectures for on-chip routers and network interfaces that are essential in the context of latency, area, and power constraints. With the rise of multicore and many-core systems, concurrency is becoming a major issue in the daily life of a programmer. Thus, compiler and software development tools are critical in helping programmers create high-performance software. Programmers should make sure that their parallelized program codes will not cause race condition, memory-access deadlocks, or other faults that may crash their entire systems. As such, Chapter 7 describes a novel parallelizing compiler design for high-performance computing. Chapter 8 provides a detailed investigation of power reduction techniques for MCSoCs at component and network levels. It discusses energy conservation in general hardware design, and also in embedded multicore system components, such as CPUs, disks, displays and memories. Lastly, Chapter 9 presents a real embedded MCSoCs system design targeted for health monitoring in the elderly.


Real World Multicore Embedded Systems

Real World Multicore Embedded Systems

Author: Frank Schirrmeister

Publisher: Elsevier Inc. Chapters

Published: 2013-02-27

Total Pages: 648

ISBN-13: 0128073373

DOWNLOAD EBOOK

This chapter will introduce the concepts of multicore related issues, while the subsequent chapters will go into further details. We will start with a general analysis of how electronic design trends lead to multicore hardware-software architectures as the only viable solution addressing consumer requirements on cost, performance and power. We will then categorize multicore architecture concepts by processing and communication requirements and show how different processing techniques combine to form multicore architectures that address the specific needs of different application domains. Special attention will be given to the programmability of the different hardware architectures and the impact that hardware has on software. We will close the chapter with a brief review of existing hardware architectures available on the market, as well as a brief discussion about programming models capable of expressing parallel functionality, which can then be mapped into multiple processor cores.


Book Synopsis Real World Multicore Embedded Systems by : Frank Schirrmeister

Download or read book Real World Multicore Embedded Systems written by Frank Schirrmeister and published by Elsevier Inc. Chapters. This book was released on 2013-02-27 with total page 648 pages. Available in PDF, EPUB and Kindle. Book excerpt: This chapter will introduce the concepts of multicore related issues, while the subsequent chapters will go into further details. We will start with a general analysis of how electronic design trends lead to multicore hardware-software architectures as the only viable solution addressing consumer requirements on cost, performance and power. We will then categorize multicore architecture concepts by processing and communication requirements and show how different processing techniques combine to form multicore architectures that address the specific needs of different application domains. Special attention will be given to the programmability of the different hardware architectures and the impact that hardware has on software. We will close the chapter with a brief review of existing hardware architectures available on the market, as well as a brief discussion about programming models capable of expressing parallel functionality, which can then be mapped into multiple processor cores.