Space Charge Physics for Particle Accelerators

Space Charge Physics for Particle Accelerators

Author: Ingo Hofmann

Publisher: Springer

Published: 2017-09-20

Total Pages: 158

ISBN-13: 3319621572

DOWNLOAD EBOOK

Understanding and controlling the physics of space charge effects in linear and circular proton and ion accelerators are essential to their operation, and to future high-intensity facilities. This book presents the status quo of this field from a theoretical perspective, compares analytical approaches with multi-particle computer simulations and – where available – with experiments. It discusses fundamental concepts of phase space motion, matched beams and modes of perturbation, along with mathematical models of analysis – from envelope to Vlasov-Poisson equations. The main emphasis is on providing a systematic description of incoherent and coherent resonance phenomena; parametric instabilities and sum modes; mismatch and halo; error driven resonances; and emittance exchange due to anisotropy, as well as the role of Landau damping. Their distinctive features are elaborated in the context of numerous sample simulations, and their potential impacts on beam quality degradation and beam loss are discussed. The book is intended for advanced beginners in accelerator research, and for experts interested in the mechanisms of direct space charge interaction and their modeling.


Book Synopsis Space Charge Physics for Particle Accelerators by : Ingo Hofmann

Download or read book Space Charge Physics for Particle Accelerators written by Ingo Hofmann and published by Springer. This book was released on 2017-09-20 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding and controlling the physics of space charge effects in linear and circular proton and ion accelerators are essential to their operation, and to future high-intensity facilities. This book presents the status quo of this field from a theoretical perspective, compares analytical approaches with multi-particle computer simulations and – where available – with experiments. It discusses fundamental concepts of phase space motion, matched beams and modes of perturbation, along with mathematical models of analysis – from envelope to Vlasov-Poisson equations. The main emphasis is on providing a systematic description of incoherent and coherent resonance phenomena; parametric instabilities and sum modes; mismatch and halo; error driven resonances; and emittance exchange due to anisotropy, as well as the role of Landau damping. Their distinctive features are elaborated in the context of numerous sample simulations, and their potential impacts on beam quality degradation and beam loss are discussed. The book is intended for advanced beginners in accelerator research, and for experts interested in the mechanisms of direct space charge interaction and their modeling.


Physics Of Intense Charged Particle Beams In High Energy Accelerators

Physics Of Intense Charged Particle Beams In High Energy Accelerators

Author: Ronald C Davidson

Publisher: World Scientific

Published: 2001-10-22

Total Pages: 603

ISBN-13: 1911298186

DOWNLOAD EBOOK

Physics of Intense Charged Particle Beams in High Energy Accelerators is a graduate-level text — complete with 75 assigned problems — which covers a broad range of topics related to the fundamental properties of collective processes and nonlinear dynamics of intense charged particle beams in periodic focusing accelerators and transport systems. The subject matter is treated systematically from first principles, using a unified theoretical approach, and the emphasis is on the development of basic concepts that illustrate the underlying physical processes in circumstances where intense self fields play a major role in determining the evolution of the system. The theoretical analysis includes the full influence of dc space charge and intense self-field effects on detailed equilibrium, stability and transport properties, and is valid over a wide range of system parameters ranging from moderate-intensity, moderate-emittance beams to very-high-intensity, low-emittance beams. This is particularly important at the high beam intensities envisioned for present and next generation accelerators, colliders and transport systems for high energy and nuclear physics applications and for heavy ion fusion. The statistical models used to describe the properties of intense charged particle beams are based on the Vlasov-Maxwell equations, the macroscopic fluid-Maxwell equations, or the Klimontovich-Maxwell equations, as appropriate, and extensive use is made of theoretical techniques developed in the description of one-component nonneutral plasmas, and multispecies electrically-neutral plasmas, as well as established techniques in accelerator physics, classical mechanics, electrodynamics and statistical physics.Physics of Intense Charged Particle Beams in High Energy Accelerators emphasizes basic physics principles, and the thorough presentation style is intended to have a lasting appeal to graduate students and researchers alike. Because of the advanced theoretical techniques developed for describing one-component charged particle systems, a useful companion volume to this book is Physics of Nonneutral Plasmas by Ronald C Davidson./a


Book Synopsis Physics Of Intense Charged Particle Beams In High Energy Accelerators by : Ronald C Davidson

Download or read book Physics Of Intense Charged Particle Beams In High Energy Accelerators written by Ronald C Davidson and published by World Scientific. This book was released on 2001-10-22 with total page 603 pages. Available in PDF, EPUB and Kindle. Book excerpt: Physics of Intense Charged Particle Beams in High Energy Accelerators is a graduate-level text — complete with 75 assigned problems — which covers a broad range of topics related to the fundamental properties of collective processes and nonlinear dynamics of intense charged particle beams in periodic focusing accelerators and transport systems. The subject matter is treated systematically from first principles, using a unified theoretical approach, and the emphasis is on the development of basic concepts that illustrate the underlying physical processes in circumstances where intense self fields play a major role in determining the evolution of the system. The theoretical analysis includes the full influence of dc space charge and intense self-field effects on detailed equilibrium, stability and transport properties, and is valid over a wide range of system parameters ranging from moderate-intensity, moderate-emittance beams to very-high-intensity, low-emittance beams. This is particularly important at the high beam intensities envisioned for present and next generation accelerators, colliders and transport systems for high energy and nuclear physics applications and for heavy ion fusion. The statistical models used to describe the properties of intense charged particle beams are based on the Vlasov-Maxwell equations, the macroscopic fluid-Maxwell equations, or the Klimontovich-Maxwell equations, as appropriate, and extensive use is made of theoretical techniques developed in the description of one-component nonneutral plasmas, and multispecies electrically-neutral plasmas, as well as established techniques in accelerator physics, classical mechanics, electrodynamics and statistical physics.Physics of Intense Charged Particle Beams in High Energy Accelerators emphasizes basic physics principles, and the thorough presentation style is intended to have a lasting appeal to graduate students and researchers alike. Because of the advanced theoretical techniques developed for describing one-component charged particle systems, a useful companion volume to this book is Physics of Nonneutral Plasmas by Ronald C Davidson./a


Particle Accelerator Physics

Particle Accelerator Physics

Author: Helmut Wiedemann

Publisher: Springer Science & Business Media

Published: 2003

Total Pages: 472

ISBN-13: 9783540006725

DOWNLOAD EBOOK

This two-volume book serves as a thorough introduction to the field of high-energy particle accelerator physics and beam dynamics. Volume 1 provides a general understanding of the field and a firm basis for the study of the more elaborate topic, mainly nonlinear and higher-order beam dynamics, which is the subject of Volume 2.


Book Synopsis Particle Accelerator Physics by : Helmut Wiedemann

Download or read book Particle Accelerator Physics written by Helmut Wiedemann and published by Springer Science & Business Media. This book was released on 2003 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume book serves as a thorough introduction to the field of high-energy particle accelerator physics and beam dynamics. Volume 1 provides a general understanding of the field and a firm basis for the study of the more elaborate topic, mainly nonlinear and higher-order beam dynamics, which is the subject of Volume 2.


Nonlinear Azumuthal Space Charge Effects in Particle Accelerators

Nonlinear Azumuthal Space Charge Effects in Particle Accelerators

Author: R. A. Dory

Publisher:

Published: 1962

Total Pages: 366

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Nonlinear Azumuthal Space Charge Effects in Particle Accelerators by : R. A. Dory

Download or read book Nonlinear Azumuthal Space Charge Effects in Particle Accelerators written by R. A. Dory and published by . This book was released on 1962 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt:


An Introduction To The Physics Of Particle Accelerators

An Introduction To The Physics Of Particle Accelerators

Author: Mario Conte

Publisher: World Scientific

Published: 1991-10-24

Total Pages: 266

ISBN-13: 981451800X

DOWNLOAD EBOOK

This book provides a concise and coherent introduction to the physics of particle accelerators. It is written for students at the graduate level in physics and provides the elements to tackle the main problems regarding cyclic particle accelerators. In particular, a thorough introduction is given on the topics of such machines. Phase focusing is also fully treated, together with fundamental topics like synchrotron radiation and linear and nonlinear resonances. A chapter is devoted to rf linear accelerators and rf structures. The chapter on space charge effects deals with tune-shifts and beam-beam interactions. The final chapter treats both electron and stochastic cooling, thus rounding up the treatment of phase-space shrinkage introduced in the chapter on synchrotron.


Book Synopsis An Introduction To The Physics Of Particle Accelerators by : Mario Conte

Download or read book An Introduction To The Physics Of Particle Accelerators written by Mario Conte and published by World Scientific. This book was released on 1991-10-24 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a concise and coherent introduction to the physics of particle accelerators. It is written for students at the graduate level in physics and provides the elements to tackle the main problems regarding cyclic particle accelerators. In particular, a thorough introduction is given on the topics of such machines. Phase focusing is also fully treated, together with fundamental topics like synchrotron radiation and linear and nonlinear resonances. A chapter is devoted to rf linear accelerators and rf structures. The chapter on space charge effects deals with tune-shifts and beam-beam interactions. The final chapter treats both electron and stochastic cooling, thus rounding up the treatment of phase-space shrinkage introduced in the chapter on synchrotron.


Space Charge Dominated Beam Physics for Heavy Ion Fusion

Space Charge Dominated Beam Physics for Heavy Ion Fusion

Author: Yuri K. Batygin

Publisher: American Institute of Physics

Published: 1999

Total Pages: 242

ISBN-13:

DOWNLOAD EBOOK

Fusion is a combining of atoms to form other atoms, which occurs when their nuclei get close enough to each other. The energy that powers the sun actually comes from nuclear fusion. The realization of fusion in laboratory conditions requires 1000 trillion watts of a charged particle beam over a period of approx. 10 billionth of a second (10 nanoseconds) to ignite a target of thermonuclear fuel. Due to natural repulsion of particles via Coulomb forces, beam space charge effects remain the key problem for designers of high intensity accelerators for heavy ion fusion. The subject of the RIKEN Symposium was to review the present understanding of space charge phenomena and to discuss possible solutions for unresolved problems.


Book Synopsis Space Charge Dominated Beam Physics for Heavy Ion Fusion by : Yuri K. Batygin

Download or read book Space Charge Dominated Beam Physics for Heavy Ion Fusion written by Yuri K. Batygin and published by American Institute of Physics. This book was released on 1999 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fusion is a combining of atoms to form other atoms, which occurs when their nuclei get close enough to each other. The energy that powers the sun actually comes from nuclear fusion. The realization of fusion in laboratory conditions requires 1000 trillion watts of a charged particle beam over a period of approx. 10 billionth of a second (10 nanoseconds) to ignite a target of thermonuclear fuel. Due to natural repulsion of particles via Coulomb forces, beam space charge effects remain the key problem for designers of high intensity accelerators for heavy ion fusion. The subject of the RIKEN Symposium was to review the present understanding of space charge phenomena and to discuss possible solutions for unresolved problems.


Space Charge Effects and Advanced Modelling for CERN Low Energy Machines

Space Charge Effects and Advanced Modelling for CERN Low Energy Machines

Author: Adrian Oeftiger

Publisher:

Published: 2016

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Mots-clés de l'auteur: particle accelerators physics ; electrodynamics ; beam dynamics ; collective effects ; space charge ; particle-in-cell algorithm.


Book Synopsis Space Charge Effects and Advanced Modelling for CERN Low Energy Machines by : Adrian Oeftiger

Download or read book Space Charge Effects and Advanced Modelling for CERN Low Energy Machines written by Adrian Oeftiger and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Mots-clés de l'auteur: particle accelerators physics ; electrodynamics ; beam dynamics ; collective effects ; space charge ; particle-in-cell algorithm.


Handbook Of Accelerator Physics And Engineering (Third Edition)

Handbook Of Accelerator Physics And Engineering (Third Edition)

Author: Alexander Wu Chao

Publisher: World Scientific

Published: 2023-02-02

Total Pages: 960

ISBN-13: 981126919X

DOWNLOAD EBOOK

Edited by internationally recognized authorities in the field, this expanded and updated new edition of the bestselling Handbook, containing many new articles, is aimed at the design and operation of modern particle accelerators. It is intended as a vade mecum for professional engineers and physicists engaged in these subjects. With a collection of more than 2000 equations, 300 illustrations and 500 graphs and tables, here one will find, in addition to common formulae of previous compilations, hard to find, specialized formulae, recipes and material data pooled from the lifetime experience of many of the world's most able practioners of the art and science of accelerators.The seven chapters include both theoretical and practical matters as well as an extensive glossary of accelerator types. Chapters on beam dynamics and electromagnetic and nuclear interactions deal with linear and nonlinear single particle and collective effects including spin motion, beam-environment, beam-beam, beam-electron, beam-ion and intrabeam interactions. The impedance concept and related calculations are dealt with at length as are the instabilities due to the various interactions mentioned. A chapter on operational considerations including discussions on the assessment and correction of orbit and optics errors, realtime feedbacks, generation of short photon pulses, bunch compression, phase-space exchange, tuning of normal and superconducting linacs, energy recovery linacs, free electron lasers, cryogenic vacuum systems, steady state microbuching, cooling, space-charge compensation, brightness of light sources, collider luminosity optimization and collision schemes, machine learning, multiple frequency rf systems, FEL seeding, ultrafast electron diffraction, and Gamma Factory. Chapters on mechanical and electrical considerations present material data and important aspects of component design including heat transfer and refrigeration. Hardware systems for particle sources, feedback systems, confinement, including undulators, and acceleration (both normal and superconducting) receive detailed treatment in a sub-systems chapter, beam measurement and apparatus being treated therein as well.A detailed name and subject index is provided together with reliable references to the literature where the most detailed information available on all subjects treated can be found.


Book Synopsis Handbook Of Accelerator Physics And Engineering (Third Edition) by : Alexander Wu Chao

Download or read book Handbook Of Accelerator Physics And Engineering (Third Edition) written by Alexander Wu Chao and published by World Scientific. This book was released on 2023-02-02 with total page 960 pages. Available in PDF, EPUB and Kindle. Book excerpt: Edited by internationally recognized authorities in the field, this expanded and updated new edition of the bestselling Handbook, containing many new articles, is aimed at the design and operation of modern particle accelerators. It is intended as a vade mecum for professional engineers and physicists engaged in these subjects. With a collection of more than 2000 equations, 300 illustrations and 500 graphs and tables, here one will find, in addition to common formulae of previous compilations, hard to find, specialized formulae, recipes and material data pooled from the lifetime experience of many of the world's most able practioners of the art and science of accelerators.The seven chapters include both theoretical and practical matters as well as an extensive glossary of accelerator types. Chapters on beam dynamics and electromagnetic and nuclear interactions deal with linear and nonlinear single particle and collective effects including spin motion, beam-environment, beam-beam, beam-electron, beam-ion and intrabeam interactions. The impedance concept and related calculations are dealt with at length as are the instabilities due to the various interactions mentioned. A chapter on operational considerations including discussions on the assessment and correction of orbit and optics errors, realtime feedbacks, generation of short photon pulses, bunch compression, phase-space exchange, tuning of normal and superconducting linacs, energy recovery linacs, free electron lasers, cryogenic vacuum systems, steady state microbuching, cooling, space-charge compensation, brightness of light sources, collider luminosity optimization and collision schemes, machine learning, multiple frequency rf systems, FEL seeding, ultrafast electron diffraction, and Gamma Factory. Chapters on mechanical and electrical considerations present material data and important aspects of component design including heat transfer and refrigeration. Hardware systems for particle sources, feedback systems, confinement, including undulators, and acceleration (both normal and superconducting) receive detailed treatment in a sub-systems chapter, beam measurement and apparatus being treated therein as well.A detailed name and subject index is provided together with reliable references to the literature where the most detailed information available on all subjects treated can be found.


Physics of New Methods of Charged Particle Acceleration

Physics of New Methods of Charged Particle Acceleration

Author: A. G. Bonch-Osmolovsky

Publisher: World Scientific

Published: 1994

Total Pages: 158

ISBN-13: 9789810212384

DOWNLOAD EBOOK

http://www.worldscientific.com/worldscibooks/10.1142/1888


Book Synopsis Physics of New Methods of Charged Particle Acceleration by : A. G. Bonch-Osmolovsky

Download or read book Physics of New Methods of Charged Particle Acceleration written by A. G. Bonch-Osmolovsky and published by World Scientific. This book was released on 1994 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: http://www.worldscientific.com/worldscibooks/10.1142/1888


Particle Physics Reference Library

Particle Physics Reference Library

Author: Stephen Myers

Publisher: Springer Nature

Published: 2020-01-01

Total Pages: 867

ISBN-13: 303034245X

DOWNLOAD EBOOK

This third open access volume of the handbook series deals with accelerator physics, design, technology and operations, as well as with beam optics, dynamics and diagnostics. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A,B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access.


Book Synopsis Particle Physics Reference Library by : Stephen Myers

Download or read book Particle Physics Reference Library written by Stephen Myers and published by Springer Nature. This book was released on 2020-01-01 with total page 867 pages. Available in PDF, EPUB and Kindle. Book excerpt: This third open access volume of the handbook series deals with accelerator physics, design, technology and operations, as well as with beam optics, dynamics and diagnostics. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A,B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access.