Statistical Optics

Statistical Optics

Author: Joseph W. Goodman

Publisher: John Wiley & Sons

Published: 2015-04-20

Total Pages: 544

ISBN-13: 1119009464

DOWNLOAD EBOOK

This book discusses statistical methods that are useful for treating problems in modern optics, and the application of these methods to solving a variety of such problems This book covers a variety of statistical problems in optics, including both theory and applications. The text covers the necessary background in statistics, statistical properties of light waves of various types, the theory of partial coherence and its applications, imaging with partially coherent light, atmospheric degradations of images, and noise limitations in the detection of light. New topics have been introduced in the second edition, including: Analysis of the Vander Pol oscillator model of laser light Coverage on coherence tomography and coherence multiplexing of fiber sensors An expansion of the chapter on imaging with partially coherent light, including several new examples An expanded section on speckle and its properties New sections on the cross-spectrum and bispectrum techniques for obtaining images free from atmospheric distortions A new section on imaging through atmospheric turbulence using coherent light The addition of the effects of “read noise” to the discussions of limitations encountered in detecting very weak optical signals A number of new problems and many new references have been added Statistical Optics, Second Edition is written for researchers and engineering students interested in optics, physicists and chemists, as well as graduate level courses in a University Engineering or Physics Department.


Book Synopsis Statistical Optics by : Joseph W. Goodman

Download or read book Statistical Optics written by Joseph W. Goodman and published by John Wiley & Sons. This book was released on 2015-04-20 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses statistical methods that are useful for treating problems in modern optics, and the application of these methods to solving a variety of such problems This book covers a variety of statistical problems in optics, including both theory and applications. The text covers the necessary background in statistics, statistical properties of light waves of various types, the theory of partial coherence and its applications, imaging with partially coherent light, atmospheric degradations of images, and noise limitations in the detection of light. New topics have been introduced in the second edition, including: Analysis of the Vander Pol oscillator model of laser light Coverage on coherence tomography and coherence multiplexing of fiber sensors An expansion of the chapter on imaging with partially coherent light, including several new examples An expanded section on speckle and its properties New sections on the cross-spectrum and bispectrum techniques for obtaining images free from atmospheric distortions A new section on imaging through atmospheric turbulence using coherent light The addition of the effects of “read noise” to the discussions of limitations encountered in detecting very weak optical signals A number of new problems and many new references have been added Statistical Optics, Second Edition is written for researchers and engineering students interested in optics, physicists and chemists, as well as graduate level courses in a University Engineering or Physics Department.


Theoretical Statistical Optics

Theoretical Statistical Optics

Author: Olga Korotkova

Publisher: World Scientific

Published: 2021-08-10

Total Pages: 336

ISBN-13: 981123499X

DOWNLOAD EBOOK

This monograph overviews classic and recent developments in theoretical statistical optics in connection with stationary and non-stationary (pulsed) optical source characterization and modeling, discusses various phenomena occurring with random light propagating in free space, on its interaction with optical systems, extended media and particulate collections. The text includes scalar, beam-like and general electromagnetic treatment of light. A brief statistical description of four fundamental experiments relating to random light: spatial and temporal field interference, intensity interferometry and phase conjugation, is also included in order to relate the analytical descriptions with practical observations.Rigorous mathematical methods for statistical manipulation of light sources useful for remote shaping of its various average properties, enhanced image resolution, optimized transmission in random media and for other applications are introduced. For illustration of efficient ways for manipulation of light polarization the generalized Stokes-Mueller calculus is applied for description of interaction of beam-like fields with classic and currently popular devices of polarization optics, including a spatial light modulator.Random light plays a special role in the image formation process. Three imaging modalities including the classic intensity-based system with structured source correlations, the polarization-based imaging system and the ghost interference approach are discussed in detail.Theoretical aspects of potential scattering of light from weakly scattering media are considered under a very broad range of assumptions: scalar/electromagnetic incident light, deterministic/random light/media, single/particulate media. Then, problems and methods in light characterization on interaction with extended, turbulent-like natural media, such as the Earth's atmosphere, oceans and soft bio-tissues that are currently widely used for communication, remote sensing and imaging purposes in these media, are provided.


Book Synopsis Theoretical Statistical Optics by : Olga Korotkova

Download or read book Theoretical Statistical Optics written by Olga Korotkova and published by World Scientific. This book was released on 2021-08-10 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph overviews classic and recent developments in theoretical statistical optics in connection with stationary and non-stationary (pulsed) optical source characterization and modeling, discusses various phenomena occurring with random light propagating in free space, on its interaction with optical systems, extended media and particulate collections. The text includes scalar, beam-like and general electromagnetic treatment of light. A brief statistical description of four fundamental experiments relating to random light: spatial and temporal field interference, intensity interferometry and phase conjugation, is also included in order to relate the analytical descriptions with practical observations.Rigorous mathematical methods for statistical manipulation of light sources useful for remote shaping of its various average properties, enhanced image resolution, optimized transmission in random media and for other applications are introduced. For illustration of efficient ways for manipulation of light polarization the generalized Stokes-Mueller calculus is applied for description of interaction of beam-like fields with classic and currently popular devices of polarization optics, including a spatial light modulator.Random light plays a special role in the image formation process. Three imaging modalities including the classic intensity-based system with structured source correlations, the polarization-based imaging system and the ghost interference approach are discussed in detail.Theoretical aspects of potential scattering of light from weakly scattering media are considered under a very broad range of assumptions: scalar/electromagnetic incident light, deterministic/random light/media, single/particulate media. Then, problems and methods in light characterization on interaction with extended, turbulent-like natural media, such as the Earth's atmosphere, oceans and soft bio-tissues that are currently widely used for communication, remote sensing and imaging purposes in these media, are provided.


Introduction to Statistical Optics

Introduction to Statistical Optics

Author: Edward L. O'Neill

Publisher: Courier Corporation

Published: 2003-01-01

Total Pages: 197

ISBN-13: 0486435784

DOWNLOAD EBOOK

Authoritative introduction covers the role of Green's function in mathematical physics, essential differences between spatial and time filters, fundamental relations of paraxial optics, and effects of aberration terms on image formation. "An excellent book; well-organized, and well-written." — Journal of the Optical Society of America. 80 illustrations. 1963 edition.


Book Synopsis Introduction to Statistical Optics by : Edward L. O'Neill

Download or read book Introduction to Statistical Optics written by Edward L. O'Neill and published by Courier Corporation. This book was released on 2003-01-01 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: Authoritative introduction covers the role of Green's function in mathematical physics, essential differences between spatial and time filters, fundamental relations of paraxial optics, and effects of aberration terms on image formation. "An excellent book; well-organized, and well-written." — Journal of the Optical Society of America. 80 illustrations. 1963 edition.


Statistical Optics

Statistical Optics

Author: Joseph W. Goodman

Publisher: John Wiley & Sons

Published: 2015-05-04

Total Pages: 547

ISBN-13: 1119009456

DOWNLOAD EBOOK

This book discusses statistical methods that are useful for treating problems in modern optics, and the application of these methods to solving a variety of such problems This book covers a variety of statistical problems in optics, including both theory and applications. The text covers the necessary background in statistics, statistical properties of light waves of various types, the theory of partial coherence and its applications, imaging with partially coherent light, atmospheric degradations of images, and noise limitations in the detection of light. New topics have been introduced in the second edition, including: Analysis of the Vander Pol oscillator model of laser light Coverage on coherence tomography and coherence multiplexing of fiber sensors An expansion of the chapter on imaging with partially coherent light, including several new examples An expanded section on speckle and its properties New sections on the cross-spectrum and bispectrum techniques for obtaining images free from atmospheric distortions A new section on imaging through atmospheric turbulence using coherent light The addition of the effects of “read noise” to the discussions of limitations encountered in detecting very weak optical signals A number of new problems and many new references have been added Statistical Optics, Second Edition is written for researchers and engineering students interested in optics, physicists and chemists, as well as graduate level courses in a University Engineering or Physics Department.


Book Synopsis Statistical Optics by : Joseph W. Goodman

Download or read book Statistical Optics written by Joseph W. Goodman and published by John Wiley & Sons. This book was released on 2015-05-04 with total page 547 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses statistical methods that are useful for treating problems in modern optics, and the application of these methods to solving a variety of such problems This book covers a variety of statistical problems in optics, including both theory and applications. The text covers the necessary background in statistics, statistical properties of light waves of various types, the theory of partial coherence and its applications, imaging with partially coherent light, atmospheric degradations of images, and noise limitations in the detection of light. New topics have been introduced in the second edition, including: Analysis of the Vander Pol oscillator model of laser light Coverage on coherence tomography and coherence multiplexing of fiber sensors An expansion of the chapter on imaging with partially coherent light, including several new examples An expanded section on speckle and its properties New sections on the cross-spectrum and bispectrum techniques for obtaining images free from atmospheric distortions A new section on imaging through atmospheric turbulence using coherent light The addition of the effects of “read noise” to the discussions of limitations encountered in detecting very weak optical signals A number of new problems and many new references have been added Statistical Optics, Second Edition is written for researchers and engineering students interested in optics, physicists and chemists, as well as graduate level courses in a University Engineering or Physics Department.


Statistical Methods in Quantum Optics 1

Statistical Methods in Quantum Optics 1

Author: Howard J. Carmichael

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 384

ISBN-13: 3662038757

DOWNLOAD EBOOK

This is the first of a two-volume presentation on current research problems in quantum optics, and will serve as a standard reference in the field for many years to come. The book provides an introduction to the methods of quantum statistical mechanics used in quantum optics and their application to the quantum theories of the single-mode laser and optical bistability. The generalized representations of Drummond and Gardiner are discussed together with the more standard methods for deriving Fokker-Planck equations.


Book Synopsis Statistical Methods in Quantum Optics 1 by : Howard J. Carmichael

Download or read book Statistical Methods in Quantum Optics 1 written by Howard J. Carmichael and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first of a two-volume presentation on current research problems in quantum optics, and will serve as a standard reference in the field for many years to come. The book provides an introduction to the methods of quantum statistical mechanics used in quantum optics and their application to the quantum theories of the single-mode laser and optical bistability. The generalized representations of Drummond and Gardiner are discussed together with the more standard methods for deriving Fokker-Planck equations.


Probability, Statistical Optics, and Data Testing

Probability, Statistical Optics, and Data Testing

Author: Roy Frieden

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 496

ISBN-13: 3642566995

DOWNLOAD EBOOK

Scientists and engineers in optics are increasingly confronted with problems that are of a random nature and that require a working knowledge of probability and statistics for their solution. This book develops these subjects within the context of optics, using a problem-solving approach. All methods are explicitly derived and can be traced back to three simple axioms given at the outset. This third edition contains many new applications to optical and physical phenomena, including a method of exactly estimating probability laws.


Book Synopsis Probability, Statistical Optics, and Data Testing by : Roy Frieden

Download or read book Probability, Statistical Optics, and Data Testing written by Roy Frieden and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Scientists and engineers in optics are increasingly confronted with problems that are of a random nature and that require a working knowledge of probability and statistics for their solution. This book develops these subjects within the context of optics, using a problem-solving approach. All methods are explicitly derived and can be traced back to three simple axioms given at the outset. This third edition contains many new applications to optical and physical phenomena, including a method of exactly estimating probability laws.


Statistics for Imaging, Optics, and Photonics

Statistics for Imaging, Optics, and Photonics

Author: Peter Bajorski

Publisher: John Wiley & Sons

Published: 2011-10-17

Total Pages: 420

ISBN-13: 0470509457

DOWNLOAD EBOOK

A vivid, hands-on discussion of the statistical methods in imaging, optics, and photonics applications In the field of imaging science, there is a growing need for students and practitioners to be equipped with the necessary knowledge and tools to carry out quantitative analysis of data. Providing a self-contained approach that is not too heavily statistical in nature, Statistics for Imaging, Optics, and Photonics presents necessary analytical techniques in the context of real examples from various areas within the field, including remote sensing, color science, printing, and astronomy. Bridging the gap between imaging, optics, photonics, and statistical data analysis, the author uniquely concentrates on statistical inference, providing a wide range of relevant methods. Brief introductions to key probabilistic terms are provided at the beginning of the book in order to present the notation used, followed by discussions on multivariate techniques such as: Linear regression models, vector and matrix algebra, and random vectors and matrices Multivariate statistical inference, including inferences about both mean vectors and covariance matrices Principal components analysis Canonical correlation analysis Discrimination and classification analysis for two or more populations and spatial smoothing Cluster analysis, including similarity and dissimilarity measures and hierarchical and nonhierarchical clustering methods Intuitive and geometric understanding of concepts is emphasized, and all examples are relatively simple and include background explanations. Computational results and graphs are presented using the freely available R software, and can be replicated by using a variety of software packages. Throughout the book, problem sets and solutions contain partial numerical results, allowing readers to confirm the accuracy of their approach; and a related website features additional resources including the book's datasets and figures. Statistics for Imaging, Optics, and Photonics is an excellent book for courses on multivariate statistics for imaging science, optics, and photonics at the upper-undergraduate and graduate levels. The book also serves as a valuable reference for professionals working in imaging, optics, and photonics who carry out data analyses in their everyday work.


Book Synopsis Statistics for Imaging, Optics, and Photonics by : Peter Bajorski

Download or read book Statistics for Imaging, Optics, and Photonics written by Peter Bajorski and published by John Wiley & Sons. This book was released on 2011-10-17 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: A vivid, hands-on discussion of the statistical methods in imaging, optics, and photonics applications In the field of imaging science, there is a growing need for students and practitioners to be equipped with the necessary knowledge and tools to carry out quantitative analysis of data. Providing a self-contained approach that is not too heavily statistical in nature, Statistics for Imaging, Optics, and Photonics presents necessary analytical techniques in the context of real examples from various areas within the field, including remote sensing, color science, printing, and astronomy. Bridging the gap between imaging, optics, photonics, and statistical data analysis, the author uniquely concentrates on statistical inference, providing a wide range of relevant methods. Brief introductions to key probabilistic terms are provided at the beginning of the book in order to present the notation used, followed by discussions on multivariate techniques such as: Linear regression models, vector and matrix algebra, and random vectors and matrices Multivariate statistical inference, including inferences about both mean vectors and covariance matrices Principal components analysis Canonical correlation analysis Discrimination and classification analysis for two or more populations and spatial smoothing Cluster analysis, including similarity and dissimilarity measures and hierarchical and nonhierarchical clustering methods Intuitive and geometric understanding of concepts is emphasized, and all examples are relatively simple and include background explanations. Computational results and graphs are presented using the freely available R software, and can be replicated by using a variety of software packages. Throughout the book, problem sets and solutions contain partial numerical results, allowing readers to confirm the accuracy of their approach; and a related website features additional resources including the book's datasets and figures. Statistics for Imaging, Optics, and Photonics is an excellent book for courses on multivariate statistics for imaging science, optics, and photonics at the upper-undergraduate and graduate levels. The book also serves as a valuable reference for professionals working in imaging, optics, and photonics who carry out data analyses in their everyday work.


Probability, Statistical Optics, and Data Testing

Probability, Statistical Optics, and Data Testing

Author: B.Roy Frieden

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 459

ISBN-13: 3642972896

DOWNLOAD EBOOK

This new edition incorporates corrections of all known typographical errors in the first edition, as well as some more substantive changes. Chief among the latter is the addition of Chap. 17, on methods of estimation. As with the rest of the text, most applications and examples cited in the new chapter are from the optical perspective. The intention behind this new chapter is to empower the optical researcher with a yet broader range of research tools. Certainly a basic knowledge of estimation methods should be among these. In particular, the sections on likelihood theory and Fisher information prepare readers for the problems of optical parameter estimation and probability law estimation. Physicists and optical scientists might find this material particularly useful, since the subject of Fisher information is generally not covered in standard physical science curricula. Since the words "statistical optics" are prominent in the title of this book, their meaning needs to be clarified. There is a general tendency to overly emphasize the statistics of photons as the sine qua non of statistical optics. In view is taken, which equally emphasizes the random medium this text a wider that surrounds the photon, be it a photographic emulsion, the turbulent atmo sphere, a vibrating lens holder, etc. Also included are random interpretations of ostensibly deterministic phenomena, such as the Hurter-Driffield (H and D) curve of photography. Such a "random interpretation" sometimes breaks new ground, as in Chap.


Book Synopsis Probability, Statistical Optics, and Data Testing by : B.Roy Frieden

Download or read book Probability, Statistical Optics, and Data Testing written by B.Roy Frieden and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new edition incorporates corrections of all known typographical errors in the first edition, as well as some more substantive changes. Chief among the latter is the addition of Chap. 17, on methods of estimation. As with the rest of the text, most applications and examples cited in the new chapter are from the optical perspective. The intention behind this new chapter is to empower the optical researcher with a yet broader range of research tools. Certainly a basic knowledge of estimation methods should be among these. In particular, the sections on likelihood theory and Fisher information prepare readers for the problems of optical parameter estimation and probability law estimation. Physicists and optical scientists might find this material particularly useful, since the subject of Fisher information is generally not covered in standard physical science curricula. Since the words "statistical optics" are prominent in the title of this book, their meaning needs to be clarified. There is a general tendency to overly emphasize the statistics of photons as the sine qua non of statistical optics. In view is taken, which equally emphasizes the random medium this text a wider that surrounds the photon, be it a photographic emulsion, the turbulent atmo sphere, a vibrating lens holder, etc. Also included are random interpretations of ostensibly deterministic phenomena, such as the Hurter-Driffield (H and D) curve of photography. Such a "random interpretation" sometimes breaks new ground, as in Chap.


Speckle Phenomena in Optics

Speckle Phenomena in Optics

Author: Joseph W. Goodman

Publisher: Roberts and Company Publishers

Published: 2007

Total Pages: 422

ISBN-13: 9780974707792

DOWNLOAD EBOOK

Speckle Phenomena in Optics provides a comprehensive discussion of the statistical properties of speckle, as well as detailed coverage of its role in applications. Some of the applications discussed include speckle in astronomy, speckle in the eye, speckle in projection displays, speckle in coherence tomography, speckle in lithography, speckle in waveguides (modal noise), speckle in optical radar detection, and speckle in metrology. This book is aimed at graduate students and professionals working in a wide variety of fields.


Book Synopsis Speckle Phenomena in Optics by : Joseph W. Goodman

Download or read book Speckle Phenomena in Optics written by Joseph W. Goodman and published by Roberts and Company Publishers. This book was released on 2007 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: Speckle Phenomena in Optics provides a comprehensive discussion of the statistical properties of speckle, as well as detailed coverage of its role in applications. Some of the applications discussed include speckle in astronomy, speckle in the eye, speckle in projection displays, speckle in coherence tomography, speckle in lithography, speckle in waveguides (modal noise), speckle in optical radar detection, and speckle in metrology. This book is aimed at graduate students and professionals working in a wide variety of fields.


Modern Classical Physics

Modern Classical Physics

Author: Kip S. Thorne

Publisher: Princeton University Press

Published: 2017-09-05

Total Pages: 1551

ISBN-13: 0691159025

DOWNLOAD EBOOK

A groundbreaking text and reference book on twenty-first-century classical physics and its applications This first-year graduate-level text and reference book covers the fundamental concepts and twenty-first-century applications of six major areas of classical physics that every masters- or PhD-level physicist should be exposed to, but often isn't: statistical physics, optics (waves of all sorts), elastodynamics, fluid mechanics, plasma physics, and special and general relativity and cosmology. Growing out of a full-year course that the eminent researchers Kip Thorne and Roger Blandford taught at Caltech for almost three decades, this book is designed to broaden the training of physicists. Its six main topical sections are also designed so they can be used in separate courses, and the book provides an invaluable reference for researchers. Presents all the major fields of classical physics except three prerequisites: classical mechanics, electromagnetism, and elementary thermodynamics Elucidates the interconnections between diverse fields and explains their shared concepts and tools Focuses on fundamental concepts and modern, real-world applications Takes applications from fundamental, experimental, and applied physics; astrophysics and cosmology; geophysics, oceanography, and meteorology; biophysics and chemical physics; engineering and optical science and technology; and information science and technology Emphasizes the quantum roots of classical physics and how to use quantum techniques to elucidate classical concepts or simplify classical calculations Features hundreds of color figures, some five hundred exercises, extensive cross-references, and a detailed index An online illustration package is available


Book Synopsis Modern Classical Physics by : Kip S. Thorne

Download or read book Modern Classical Physics written by Kip S. Thorne and published by Princeton University Press. This book was released on 2017-09-05 with total page 1551 pages. Available in PDF, EPUB and Kindle. Book excerpt: A groundbreaking text and reference book on twenty-first-century classical physics and its applications This first-year graduate-level text and reference book covers the fundamental concepts and twenty-first-century applications of six major areas of classical physics that every masters- or PhD-level physicist should be exposed to, but often isn't: statistical physics, optics (waves of all sorts), elastodynamics, fluid mechanics, plasma physics, and special and general relativity and cosmology. Growing out of a full-year course that the eminent researchers Kip Thorne and Roger Blandford taught at Caltech for almost three decades, this book is designed to broaden the training of physicists. Its six main topical sections are also designed so they can be used in separate courses, and the book provides an invaluable reference for researchers. Presents all the major fields of classical physics except three prerequisites: classical mechanics, electromagnetism, and elementary thermodynamics Elucidates the interconnections between diverse fields and explains their shared concepts and tools Focuses on fundamental concepts and modern, real-world applications Takes applications from fundamental, experimental, and applied physics; astrophysics and cosmology; geophysics, oceanography, and meteorology; biophysics and chemical physics; engineering and optical science and technology; and information science and technology Emphasizes the quantum roots of classical physics and how to use quantum techniques to elucidate classical concepts or simplify classical calculations Features hundreds of color figures, some five hundred exercises, extensive cross-references, and a detailed index An online illustration package is available