Statistical Performance Analysis and Modeling Techniques for Nanometer VLSI Designs

Statistical Performance Analysis and Modeling Techniques for Nanometer VLSI Designs

Author:

Publisher: Springer

Published: 2012-03-21

Total Pages: 336

ISBN-13: 9781461407898

DOWNLOAD EBOOK


Book Synopsis Statistical Performance Analysis and Modeling Techniques for Nanometer VLSI Designs by :

Download or read book Statistical Performance Analysis and Modeling Techniques for Nanometer VLSI Designs written by and published by Springer. This book was released on 2012-03-21 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Statistical Performance Analysis and Modeling Techniques for Nanometer VLSI Designs

Statistical Performance Analysis and Modeling Techniques for Nanometer VLSI Designs

Author: Ruijing Shen

Publisher: Springer Science & Business Media

Published: 2014-07-08

Total Pages: 326

ISBN-13: 1461407885

DOWNLOAD EBOOK

Since process variation and chip performance uncertainties have become more pronounced as technologies scale down into the nanometer regime, accurate and efficient modeling or characterization of variations from the device to the architecture level have become imperative for the successful design of VLSI chips. This book provides readers with tools for variation-aware design methodologies and computer-aided design (CAD) of VLSI systems, in the presence of process variations at the nanometer scale. It presents the latest developments for modeling and analysis, with a focus on statistical interconnect modeling, statistical parasitic extractions, statistical full-chip leakage and dynamic power analysis considering spatial correlations, statistical analysis and modeling for large global interconnects and analog/mixed-signal circuits. Provides readers with timely, systematic and comprehensive treatments of statistical modeling and analysis of VLSI systems with a focus on interconnects, on-chip power grids and clock networks, and analog/mixed-signal circuits; Helps chip designers understand the potential and limitations of their design tools, improving their design productivity; Presents analysis of each algorithm with practical applications in the context of real circuit design; Includes numerical examples for the quantitative analysis and evaluation of algorithms presented. Provides readers with timely, systematic and comprehensive treatments of statistical modeling and analysis of VLSI systems with a focus on interconnects, on-chip power grids and clock networks, and analog/mixed-signal circuits; Helps chip designers understand the potential and limitations of their design tools, improving their design productivity; Presents analysis of each algorithm with practical applications in the context of real circuit design; Includes numerical examples for the quantitative analysis and evaluation of algorithms presented.


Book Synopsis Statistical Performance Analysis and Modeling Techniques for Nanometer VLSI Designs by : Ruijing Shen

Download or read book Statistical Performance Analysis and Modeling Techniques for Nanometer VLSI Designs written by Ruijing Shen and published by Springer Science & Business Media. This book was released on 2014-07-08 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since process variation and chip performance uncertainties have become more pronounced as technologies scale down into the nanometer regime, accurate and efficient modeling or characterization of variations from the device to the architecture level have become imperative for the successful design of VLSI chips. This book provides readers with tools for variation-aware design methodologies and computer-aided design (CAD) of VLSI systems, in the presence of process variations at the nanometer scale. It presents the latest developments for modeling and analysis, with a focus on statistical interconnect modeling, statistical parasitic extractions, statistical full-chip leakage and dynamic power analysis considering spatial correlations, statistical analysis and modeling for large global interconnects and analog/mixed-signal circuits. Provides readers with timely, systematic and comprehensive treatments of statistical modeling and analysis of VLSI systems with a focus on interconnects, on-chip power grids and clock networks, and analog/mixed-signal circuits; Helps chip designers understand the potential and limitations of their design tools, improving their design productivity; Presents analysis of each algorithm with practical applications in the context of real circuit design; Includes numerical examples for the quantitative analysis and evaluation of algorithms presented. Provides readers with timely, systematic and comprehensive treatments of statistical modeling and analysis of VLSI systems with a focus on interconnects, on-chip power grids and clock networks, and analog/mixed-signal circuits; Helps chip designers understand the potential and limitations of their design tools, improving their design productivity; Presents analysis of each algorithm with practical applications in the context of real circuit design; Includes numerical examples for the quantitative analysis and evaluation of algorithms presented.


Advanced Symbolic Analysis for VLSI Systems

Advanced Symbolic Analysis for VLSI Systems

Author: Guoyong Shi

Publisher: Springer

Published: 2014-06-19

Total Pages: 308

ISBN-13: 1493911031

DOWNLOAD EBOOK

This book provides comprehensive coverage of the recent advances in symbolic analysis techniques for design automation of nanometer VLSI systems. The presentation is organized in parts of fundamentals, basic implementation methods and applications for VLSI design. Topics emphasized include statistical timing and crosstalk analysis, statistical and parallel analysis, performance bound analysis and behavioral modeling for analog integrated circuits. Among the recent advances, the Binary Decision Diagram (BDD) based approaches are studied in depth. The BDD-based hierarchical symbolic analysis approaches, have essentially broken the analog circuit size barrier.


Book Synopsis Advanced Symbolic Analysis for VLSI Systems by : Guoyong Shi

Download or read book Advanced Symbolic Analysis for VLSI Systems written by Guoyong Shi and published by Springer. This book was released on 2014-06-19 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides comprehensive coverage of the recent advances in symbolic analysis techniques for design automation of nanometer VLSI systems. The presentation is organized in parts of fundamentals, basic implementation methods and applications for VLSI design. Topics emphasized include statistical timing and crosstalk analysis, statistical and parallel analysis, performance bound analysis and behavioral modeling for analog integrated circuits. Among the recent advances, the Binary Decision Diagram (BDD) based approaches are studied in depth. The BDD-based hierarchical symbolic analysis approaches, have essentially broken the analog circuit size barrier.


Advanced Field-Solver Techniques for RC Extraction of Integrated Circuits

Advanced Field-Solver Techniques for RC Extraction of Integrated Circuits

Author: Wenjian Yu

Publisher: Springer Science & Business

Published: 2014-04-21

Total Pages: 258

ISBN-13: 3642542980

DOWNLOAD EBOOK

Resistance and capacitance (RC) extraction is an essential step in modeling the interconnection wires and substrate coupling effect in nanometer-technology integrated circuits (IC). The field-solver techniques for RC extraction guarantee the accuracy of modeling, and are becoming increasingly important in meeting the demand for accurate modeling and simulation of VLSI designs. Advanced Field-Solver Techniques for RC Extraction of Integrated Circuits presents a systematic introduction to, and treatment of, the key field-solver methods for RC extraction of VLSI interconnects and substrate coupling in mixed-signal ICs. Various field-solver techniques are explained in detail, with real-world examples to illustrate the advantages and disadvantages of each algorithm. This book will benefit graduate students and researchers in the field of electrical and computer engineering as well as engineers working in the IC design and design automation industries. Dr. Wenjian Yu is an Associate Professor at the Department of Computer Science and Technology at Tsinghua University in China; Dr. Xiren Wang is a R&D Engineer at Cadence Design Systems in the USA.


Book Synopsis Advanced Field-Solver Techniques for RC Extraction of Integrated Circuits by : Wenjian Yu

Download or read book Advanced Field-Solver Techniques for RC Extraction of Integrated Circuits written by Wenjian Yu and published by Springer Science & Business. This book was released on 2014-04-21 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Resistance and capacitance (RC) extraction is an essential step in modeling the interconnection wires and substrate coupling effect in nanometer-technology integrated circuits (IC). The field-solver techniques for RC extraction guarantee the accuracy of modeling, and are becoming increasingly important in meeting the demand for accurate modeling and simulation of VLSI designs. Advanced Field-Solver Techniques for RC Extraction of Integrated Circuits presents a systematic introduction to, and treatment of, the key field-solver methods for RC extraction of VLSI interconnects and substrate coupling in mixed-signal ICs. Various field-solver techniques are explained in detail, with real-world examples to illustrate the advantages and disadvantages of each algorithm. This book will benefit graduate students and researchers in the field of electrical and computer engineering as well as engineers working in the IC design and design automation industries. Dr. Wenjian Yu is an Associate Professor at the Department of Computer Science and Technology at Tsinghua University in China; Dr. Xiren Wang is a R&D Engineer at Cadence Design Systems in the USA.


Parallel and Statistical Analysis and Modeling of Nanometer VLSI Systems

Parallel and Statistical Analysis and Modeling of Nanometer VLSI Systems

Author: Xue-Xin Liu

Publisher:

Published: 2013

Total Pages: 201

ISBN-13: 9781303055454

DOWNLOAD EBOOK

Electronic design automation (EDA) is an important part of the integrated circuit (IC) industry, and has been evolving together with design and fabrication technologies. This evolution is reflected in both algorithm perspective and software implementation perspective. Innovative algorithms delivers accurate and reliable results in shorter computation time, and thus saves human resource and R&D cost. Smartly designed software can utilize hardware resources efficiently and maximize computing performance.


Book Synopsis Parallel and Statistical Analysis and Modeling of Nanometer VLSI Systems by : Xue-Xin Liu

Download or read book Parallel and Statistical Analysis and Modeling of Nanometer VLSI Systems written by Xue-Xin Liu and published by . This book was released on 2013 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electronic design automation (EDA) is an important part of the integrated circuit (IC) industry, and has been evolving together with design and fabrication technologies. This evolution is reflected in both algorithm perspective and software implementation perspective. Innovative algorithms delivers accurate and reliable results in shorter computation time, and thus saves human resource and R&D cost. Smartly designed software can utilize hardware resources efficiently and maximize computing performance.


Long-Term Reliability of Nanometer VLSI Systems

Long-Term Reliability of Nanometer VLSI Systems

Author: Sheldon Tan

Publisher: Springer Nature

Published: 2019-09-12

Total Pages: 460

ISBN-13: 3030261727

DOWNLOAD EBOOK

This book provides readers with a detailed reference regarding two of the most important long-term reliability and aging effects on nanometer integrated systems, electromigrations (EM) for interconnect and biased temperature instability (BTI) for CMOS devices. The authors discuss in detail recent developments in the modeling, analysis and optimization of the reliability effects from EM and BTI induced failures at the circuit, architecture and system levels of abstraction. Readers will benefit from a focus on topics such as recently developed, physics-based EM modeling, EM modeling for multi-segment wires, new EM-aware power grid analysis, and system level EM-induced reliability optimization and management techniques. Reviews classic Electromigration (EM) models, as well as existing EM failure models and discusses the limitations of those models; Introduces a dynamic EM model to address transient stress evolution, in which wires are stressed under time-varying current flows, and the EM recovery effects. Also includes new, parameterized equivalent DC current based EM models to address the recovery and transient effects; Presents a cross-layer approach to transistor aging modeling, analysis and mitigation, spanning multiple abstraction levels; Equips readers for EM-induced dynamic reliability management and energy or lifetime optimization techniques, for many-core dark silicon microprocessors, embedded systems, lower power many-core processors and datacenters.


Book Synopsis Long-Term Reliability of Nanometer VLSI Systems by : Sheldon Tan

Download or read book Long-Term Reliability of Nanometer VLSI Systems written by Sheldon Tan and published by Springer Nature. This book was released on 2019-09-12 with total page 460 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides readers with a detailed reference regarding two of the most important long-term reliability and aging effects on nanometer integrated systems, electromigrations (EM) for interconnect and biased temperature instability (BTI) for CMOS devices. The authors discuss in detail recent developments in the modeling, analysis and optimization of the reliability effects from EM and BTI induced failures at the circuit, architecture and system levels of abstraction. Readers will benefit from a focus on topics such as recently developed, physics-based EM modeling, EM modeling for multi-segment wires, new EM-aware power grid analysis, and system level EM-induced reliability optimization and management techniques. Reviews classic Electromigration (EM) models, as well as existing EM failure models and discusses the limitations of those models; Introduces a dynamic EM model to address transient stress evolution, in which wires are stressed under time-varying current flows, and the EM recovery effects. Also includes new, parameterized equivalent DC current based EM models to address the recovery and transient effects; Presents a cross-layer approach to transistor aging modeling, analysis and mitigation, spanning multiple abstraction levels; Equips readers for EM-induced dynamic reliability management and energy or lifetime optimization techniques, for many-core dark silicon microprocessors, embedded systems, lower power many-core processors and datacenters.


Compact Models for Integrated Circuit Design

Compact Models for Integrated Circuit Design

Author: Samar K. Saha

Publisher: CRC Press

Published: 2018-09-03

Total Pages: 548

ISBN-13: 148224067X

DOWNLOAD EBOOK

Compact Models for Integrated Circuit Design: Conventional Transistors and Beyond provides a modern treatise on compact models for circuit computer-aided design (CAD). Written by an author with more than 25 years of industry experience in semiconductor processes, devices, and circuit CAD, and more than 10 years of academic experience in teaching compact modeling courses, this first-of-its-kind book on compact SPICE models for very-large-scale-integrated (VLSI) chip design offers a balanced presentation of compact modeling crucial for addressing current modeling challenges and understanding new models for emerging devices. Starting from basic semiconductor physics and covering state-of-the-art device regimes from conventional micron to nanometer, this text: Presents industry standard models for bipolar-junction transistors (BJTs), metal-oxide-semiconductor (MOS) field-effect-transistors (FETs), FinFETs, and tunnel field-effect transistors (TFETs), along with statistical MOS models Discusses the major issue of process variability, which severely impacts device and circuit performance in advanced technologies and requires statistical compact models Promotes further research of the evolution and development of compact models for VLSI circuit design and analysis Supplies fundamental and practical knowledge necessary for efficient integrated circuit (IC) design using nanoscale devices Includes exercise problems at the end of each chapter and extensive references at the end of the book Compact Models for Integrated Circuit Design: Conventional Transistors and Beyond is intended for senior undergraduate and graduate courses in electrical and electronics engineering as well as for researchers and practitioners working in the area of electron devices. However, even those unfamiliar with semiconductor physics gain a solid grasp of compact modeling concepts from this book.


Book Synopsis Compact Models for Integrated Circuit Design by : Samar K. Saha

Download or read book Compact Models for Integrated Circuit Design written by Samar K. Saha and published by CRC Press. This book was released on 2018-09-03 with total page 548 pages. Available in PDF, EPUB and Kindle. Book excerpt: Compact Models for Integrated Circuit Design: Conventional Transistors and Beyond provides a modern treatise on compact models for circuit computer-aided design (CAD). Written by an author with more than 25 years of industry experience in semiconductor processes, devices, and circuit CAD, and more than 10 years of academic experience in teaching compact modeling courses, this first-of-its-kind book on compact SPICE models for very-large-scale-integrated (VLSI) chip design offers a balanced presentation of compact modeling crucial for addressing current modeling challenges and understanding new models for emerging devices. Starting from basic semiconductor physics and covering state-of-the-art device regimes from conventional micron to nanometer, this text: Presents industry standard models for bipolar-junction transistors (BJTs), metal-oxide-semiconductor (MOS) field-effect-transistors (FETs), FinFETs, and tunnel field-effect transistors (TFETs), along with statistical MOS models Discusses the major issue of process variability, which severely impacts device and circuit performance in advanced technologies and requires statistical compact models Promotes further research of the evolution and development of compact models for VLSI circuit design and analysis Supplies fundamental and practical knowledge necessary for efficient integrated circuit (IC) design using nanoscale devices Includes exercise problems at the end of each chapter and extensive references at the end of the book Compact Models for Integrated Circuit Design: Conventional Transistors and Beyond is intended for senior undergraduate and graduate courses in electrical and electronics engineering as well as for researchers and practitioners working in the area of electron devices. However, even those unfamiliar with semiconductor physics gain a solid grasp of compact modeling concepts from this book.


Statistical Modeling for Computer-Aided Design of MOS VLSI Circuits

Statistical Modeling for Computer-Aided Design of MOS VLSI Circuits

Author: Christopher Michael

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 200

ISBN-13: 1461531500

DOWNLOAD EBOOK

As MOS devices are scaled to meet increasingly demanding circuit specifications, process variations have a greater effect on the reliability of circuit performance. For this reason, statistical techniques are required to design integrated circuits with maximum yield. Statistical Modeling for Computer-Aided Design of MOS VLSI Circuits describes a statistical circuit simulation and optimization environment for VLSI circuit designers. The first step toward accomplishing statistical circuit design and optimization is the development of an accurate CAD tool capable of performing statistical simulation. This tool must be based on a statistical model which comprehends the effect of device and circuit characteristics, such as device size, bias, and circuit layout, which are under the control of the circuit designer on the variability of circuit performance. The distinctive feature of the CAD tool described in this book is its ability to accurately model and simulate the effect in both intra- and inter-die process variability on analog/digital circuits, accounting for the effects of the aforementioned device and circuit characteristics. Statistical Modeling for Computer-Aided Design of MOS VLSI Circuits serves as an excellent reference for those working in the field, and may be used as the text for an advanced course on the subject.


Book Synopsis Statistical Modeling for Computer-Aided Design of MOS VLSI Circuits by : Christopher Michael

Download or read book Statistical Modeling for Computer-Aided Design of MOS VLSI Circuits written by Christopher Michael and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: As MOS devices are scaled to meet increasingly demanding circuit specifications, process variations have a greater effect on the reliability of circuit performance. For this reason, statistical techniques are required to design integrated circuits with maximum yield. Statistical Modeling for Computer-Aided Design of MOS VLSI Circuits describes a statistical circuit simulation and optimization environment for VLSI circuit designers. The first step toward accomplishing statistical circuit design and optimization is the development of an accurate CAD tool capable of performing statistical simulation. This tool must be based on a statistical model which comprehends the effect of device and circuit characteristics, such as device size, bias, and circuit layout, which are under the control of the circuit designer on the variability of circuit performance. The distinctive feature of the CAD tool described in this book is its ability to accurately model and simulate the effect in both intra- and inter-die process variability on analog/digital circuits, accounting for the effects of the aforementioned device and circuit characteristics. Statistical Modeling for Computer-Aided Design of MOS VLSI Circuits serves as an excellent reference for those working in the field, and may be used as the text for an advanced course on the subject.


Statistical Yield Analysis and Design for Nanometer VLSI

Statistical Yield Analysis and Design for Nanometer VLSI

Author: Javid Jaffari

Publisher:

Published: 2010

Total Pages: 159

ISBN-13:

DOWNLOAD EBOOK

Process variability is the pivotal factor impacting the design of high yield integrated circuits and systems in deep sub-micron CMOS technologies. The electrical and physical properties of transistors and interconnects, the building blocks of integrated circuits, are prone to significant variations that directly impact the performance and power consumption of the fabricated devices, severely impacting the manufacturing yield. However, the large number of the transistors on a single chip adds even more challenges for the analysis of the variation effects, a critical task in diagnosing the cause of failure and designing for yield. Reliable and efficient statistical analysis methodologies in various design phases are key to predict the yield before entering such an expensive fabrication process. In this thesis, the impacts of process variations are examined at three different levels: device, circuit, and micro-architecture. The variation models are provided for each level of abstraction, and new methodologies are proposed for efficient statistical analysis and design under variation.


Book Synopsis Statistical Yield Analysis and Design for Nanometer VLSI by : Javid Jaffari

Download or read book Statistical Yield Analysis and Design for Nanometer VLSI written by Javid Jaffari and published by . This book was released on 2010 with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt: Process variability is the pivotal factor impacting the design of high yield integrated circuits and systems in deep sub-micron CMOS technologies. The electrical and physical properties of transistors and interconnects, the building blocks of integrated circuits, are prone to significant variations that directly impact the performance and power consumption of the fabricated devices, severely impacting the manufacturing yield. However, the large number of the transistors on a single chip adds even more challenges for the analysis of the variation effects, a critical task in diagnosing the cause of failure and designing for yield. Reliable and efficient statistical analysis methodologies in various design phases are key to predict the yield before entering such an expensive fabrication process. In this thesis, the impacts of process variations are examined at three different levels: device, circuit, and micro-architecture. The variation models are provided for each level of abstraction, and new methodologies are proposed for efficient statistical analysis and design under variation.


Nanometer Variation-Tolerant SRAM

Nanometer Variation-Tolerant SRAM

Author: Mohamed Abu Rahma

Publisher: Springer Science & Business Media

Published: 2012-09-26

Total Pages: 176

ISBN-13: 146141749X

DOWNLOAD EBOOK

Variability is one of the most challenging obstacles for IC design in the nanometer regime. In nanometer technologies, SRAM show an increased sensitivity to process variations due to low-voltage operation requirements, which are aggravated by the strong demand for lower power consumption and cost, while achieving higher performance and density. With the drastic increase in memory densities, lower supply voltages, and higher variations, statistical simulation methodologies become imperative to estimate memory yield and optimize performance and power. This book is an invaluable reference on robust SRAM circuits and statistical design methodologies for researchers and practicing engineers in the field of memory design. It combines state of the art circuit techniques and statistical methodologies to optimize SRAM performance and yield in nanometer technologies. Provides comprehensive review of state-of-the-art, variation-tolerant SRAM circuit techniques; Discusses Impact of device related process variations and how they affect circuit and system performance, from a design point of view; Helps designers optimize memory yield, with practical statistical design methodologies and yield estimation techniques.


Book Synopsis Nanometer Variation-Tolerant SRAM by : Mohamed Abu Rahma

Download or read book Nanometer Variation-Tolerant SRAM written by Mohamed Abu Rahma and published by Springer Science & Business Media. This book was released on 2012-09-26 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: Variability is one of the most challenging obstacles for IC design in the nanometer regime. In nanometer technologies, SRAM show an increased sensitivity to process variations due to low-voltage operation requirements, which are aggravated by the strong demand for lower power consumption and cost, while achieving higher performance and density. With the drastic increase in memory densities, lower supply voltages, and higher variations, statistical simulation methodologies become imperative to estimate memory yield and optimize performance and power. This book is an invaluable reference on robust SRAM circuits and statistical design methodologies for researchers and practicing engineers in the field of memory design. It combines state of the art circuit techniques and statistical methodologies to optimize SRAM performance and yield in nanometer technologies. Provides comprehensive review of state-of-the-art, variation-tolerant SRAM circuit techniques; Discusses Impact of device related process variations and how they affect circuit and system performance, from a design point of view; Helps designers optimize memory yield, with practical statistical design methodologies and yield estimation techniques.