Stochastic Behavior in Classical and Quantum Hamiltonian Systems

Stochastic Behavior in Classical and Quantum Hamiltonian Systems

Author: Giulio Casati

Publisher:

Published: 1979

Total Pages:

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Stochastic Behavior in Classical and Quantum Hamiltonian Systems by : Giulio Casati

Download or read book Stochastic Behavior in Classical and Quantum Hamiltonian Systems written by Giulio Casati and published by . This book was released on 1979 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:


Stochastic Behavior in Classical and Quantum Hamiltonian Systems

Stochastic Behavior in Classical and Quantum Hamiltonian Systems

Author: Giulio Casati

Publisher:

Published: 2014-01-15

Total Pages: 388

ISBN-13: 9783662183656

DOWNLOAD EBOOK


Book Synopsis Stochastic Behavior in Classical and Quantum Hamiltonian Systems by : Giulio Casati

Download or read book Stochastic Behavior in Classical and Quantum Hamiltonian Systems written by Giulio Casati and published by . This book was released on 2014-01-15 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Stochastic Behavior in Classical and Quantum Hamiltonian Systems

Stochastic Behavior in Classical and Quantum Hamiltonian Systems

Author: G. Casati

Publisher: Springer

Published: 1979-04-05

Total Pages: 396

ISBN-13:

DOWNLOAD EBOOK

With contributions by numerous experts


Book Synopsis Stochastic Behavior in Classical and Quantum Hamiltonian Systems by : G. Casati

Download or read book Stochastic Behavior in Classical and Quantum Hamiltonian Systems written by G. Casati and published by Springer. This book was released on 1979-04-05 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: With contributions by numerous experts


Chaotic Behavior in Quantum Systems

Chaotic Behavior in Quantum Systems

Author: Giulio Casati

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 380

ISBN-13: 1461324432

DOWNLOAD EBOOK

Six years ago, in June 1977, the first international conference on chaos in classical dynamical systems took place here in Como. For the first time, physicists, mathematicians, biologists, chemists, economists, and others got together to discuss the relevance of the recent progress in nonlinear classical dynamics for their own research field. Immediately after, pUblication of "Nonlinear Science Abstracts" started, which, in turn, led to the Physica D Journal and to a rapid increase of the research activity in the whole area with the creation of numerous "Nonlinear Centers" around the world. During these years great progress has been made in understanding the qualitative behavior of classical dynamical systems and now we can appreciate the beautiful complexity and variety of their motion. Meanwhile, an increasing number of scientists began to wonder whether and how such beautiful structures would persist in quantum motion. Indeed, mainly integrable systems have been previously con sidered by Quantum Mechanics and therefore the problem is open how to describe the qualitative behavior of systems whose classical limit is non-integrable. The present meeting was organized in view of the fact that scientists working in different fields - mathematicians, theoretical physicists, solid state physicists, nuclear physicists, chemists and others - had common problems. Moreover, we felt that it was necessary to clarify some fundamental questions concerning the logical basis for the discussion including the very definition of chaos in Quantum Mechanics.


Book Synopsis Chaotic Behavior in Quantum Systems by : Giulio Casati

Download or read book Chaotic Behavior in Quantum Systems written by Giulio Casati and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Six years ago, in June 1977, the first international conference on chaos in classical dynamical systems took place here in Como. For the first time, physicists, mathematicians, biologists, chemists, economists, and others got together to discuss the relevance of the recent progress in nonlinear classical dynamics for their own research field. Immediately after, pUblication of "Nonlinear Science Abstracts" started, which, in turn, led to the Physica D Journal and to a rapid increase of the research activity in the whole area with the creation of numerous "Nonlinear Centers" around the world. During these years great progress has been made in understanding the qualitative behavior of classical dynamical systems and now we can appreciate the beautiful complexity and variety of their motion. Meanwhile, an increasing number of scientists began to wonder whether and how such beautiful structures would persist in quantum motion. Indeed, mainly integrable systems have been previously con sidered by Quantum Mechanics and therefore the problem is open how to describe the qualitative behavior of systems whose classical limit is non-integrable. The present meeting was organized in view of the fact that scientists working in different fields - mathematicians, theoretical physicists, solid state physicists, nuclear physicists, chemists and others - had common problems. Moreover, we felt that it was necessary to clarify some fundamental questions concerning the logical basis for the discussion including the very definition of chaos in Quantum Mechanics.


Classical and Quantum Dynamics of Constrained Hamiltonian Systems

Classical and Quantum Dynamics of Constrained Hamiltonian Systems

Author: Heinz J. Rothe

Publisher: World Scientific

Published: 2010

Total Pages: 317

ISBN-13: 9814299650

DOWNLOAD EBOOK

This book is an introduction to the field of constrained Hamiltonian systems and their quantization, a topic which is of central interest to theoretical physicists who wish to obtain a deeper understanding of the quantization of gauge theories, such as describing the fundamental interactions in nature. Beginning with the early work of Dirac, the book covers the main developments in the field up to more recent topics, such as the field-antifield formalism of Batalin and Vilkovisky, including a short discussion of how gauge anomalies may be incorporated into this formalism. The book is comprehensive and well-illustrated with examples, enables graduate students to follow the literature on this subject without much problems, and to perform research in this field.


Book Synopsis Classical and Quantum Dynamics of Constrained Hamiltonian Systems by : Heinz J. Rothe

Download or read book Classical and Quantum Dynamics of Constrained Hamiltonian Systems written by Heinz J. Rothe and published by World Scientific. This book was released on 2010 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to the field of constrained Hamiltonian systems and their quantization, a topic which is of central interest to theoretical physicists who wish to obtain a deeper understanding of the quantization of gauge theories, such as describing the fundamental interactions in nature. Beginning with the early work of Dirac, the book covers the main developments in the field up to more recent topics, such as the field-antifield formalism of Batalin and Vilkovisky, including a short discussion of how gauge anomalies may be incorporated into this formalism. The book is comprehensive and well-illustrated with examples, enables graduate students to follow the literature on this subject without much problems, and to perform research in this field.


Chaos in Classical and Quantum Mechanics

Chaos in Classical and Quantum Mechanics

Author: Martin C. Gutzwiller

Publisher: Springer Science & Business Media

Published: 2013-11-27

Total Pages: 445

ISBN-13: 1461209838

DOWNLOAD EBOOK

Describes the chaos apparent in simple mechanical systems with the goal of elucidating the connections between classical and quantum mechanics. It develops the relevant ideas of the last two decades via geometric intuition rather than algebraic manipulation. The historical and cultural background against which these scientific developments have occurred is depicted, and realistic examples are discussed in detail. This book enables entry-level graduate students to tackle fresh problems in this rich field.


Book Synopsis Chaos in Classical and Quantum Mechanics by : Martin C. Gutzwiller

Download or read book Chaos in Classical and Quantum Mechanics written by Martin C. Gutzwiller and published by Springer Science & Business Media. This book was released on 2013-11-27 with total page 445 pages. Available in PDF, EPUB and Kindle. Book excerpt: Describes the chaos apparent in simple mechanical systems with the goal of elucidating the connections between classical and quantum mechanics. It develops the relevant ideas of the last two decades via geometric intuition rather than algebraic manipulation. The historical and cultural background against which these scientific developments have occurred is depicted, and realistic examples are discussed in detail. This book enables entry-level graduate students to tackle fresh problems in this rich field.


Classical and Quantum Dynamics

Classical and Quantum Dynamics

Author: Walter Dittrich

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 333

ISBN-13: 3642979211

DOWNLOAD EBOOK

In the past 10 to 15 years, the quantum leap in understanding of nonlinear dynamics has radically changed the frame of reference of physicists contemplating such systems. This book treats classical and quantum mechanics using an approach as introduced by nonlinear Hamiltonian dynamics and path integral methods. It is written for graduate students who want to become familiar with the more advancedcomputational strategies in classical and quantum dynamics. Therefore, worked examples comprise a large part of the text. While the first half of the book lays the groundwork for a standard course, the second half, with its detailed treatment of the time-dependent oscillator, classical and quantum Chern-Simons mechanics, the Maslov anomaly and the Berry phase, willacquaint the reader with modern topological methods that have not as yet found their way into the textbook literature.


Book Synopsis Classical and Quantum Dynamics by : Walter Dittrich

Download or read book Classical and Quantum Dynamics written by Walter Dittrich and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the past 10 to 15 years, the quantum leap in understanding of nonlinear dynamics has radically changed the frame of reference of physicists contemplating such systems. This book treats classical and quantum mechanics using an approach as introduced by nonlinear Hamiltonian dynamics and path integral methods. It is written for graduate students who want to become familiar with the more advancedcomputational strategies in classical and quantum dynamics. Therefore, worked examples comprise a large part of the text. While the first half of the book lays the groundwork for a standard course, the second half, with its detailed treatment of the time-dependent oscillator, classical and quantum Chern-Simons mechanics, the Maslov anomaly and the Berry phase, willacquaint the reader with modern topological methods that have not as yet found their way into the textbook literature.


Stochastic Controls

Stochastic Controls

Author: Jiongmin Yong

Publisher: Springer Science & Business Media

Published: 1999-06-22

Total Pages: 472

ISBN-13: 9780387987231

DOWNLOAD EBOOK

As is well known, Pontryagin's maximum principle and Bellman's dynamic programming are the two principal and most commonly used approaches in solving stochastic optimal control problems. * An interesting phenomenon one can observe from the literature is that these two approaches have been developed separately and independently. Since both methods are used to investigate the same problems, a natural question one will ask is the fol lowing: (Q) What is the relationship betwccn the maximum principlc and dy namic programming in stochastic optimal controls? There did exist some researches (prior to the 1980s) on the relationship between these two. Nevertheless, the results usually werestated in heuristic terms and proved under rather restrictive assumptions, which were not satisfied in most cases. In the statement of a Pontryagin-type maximum principle there is an adjoint equation, which is an ordinary differential equation (ODE) in the (finite-dimensional) deterministic case and a stochastic differential equation (SDE) in the stochastic case. The system consisting of the adjoint equa tion, the original state equation, and the maximum condition is referred to as an (extended) Hamiltonian system. On the other hand, in Bellman's dynamic programming, there is a partial differential equation (PDE), of first order in the (finite-dimensional) deterministic case and of second or der in the stochastic case. This is known as a Hamilton-Jacobi-Bellman (HJB) equation.


Book Synopsis Stochastic Controls by : Jiongmin Yong

Download or read book Stochastic Controls written by Jiongmin Yong and published by Springer Science & Business Media. This book was released on 1999-06-22 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: As is well known, Pontryagin's maximum principle and Bellman's dynamic programming are the two principal and most commonly used approaches in solving stochastic optimal control problems. * An interesting phenomenon one can observe from the literature is that these two approaches have been developed separately and independently. Since both methods are used to investigate the same problems, a natural question one will ask is the fol lowing: (Q) What is the relationship betwccn the maximum principlc and dy namic programming in stochastic optimal controls? There did exist some researches (prior to the 1980s) on the relationship between these two. Nevertheless, the results usually werestated in heuristic terms and proved under rather restrictive assumptions, which were not satisfied in most cases. In the statement of a Pontryagin-type maximum principle there is an adjoint equation, which is an ordinary differential equation (ODE) in the (finite-dimensional) deterministic case and a stochastic differential equation (SDE) in the stochastic case. The system consisting of the adjoint equa tion, the original state equation, and the maximum condition is referred to as an (extended) Hamiltonian system. On the other hand, in Bellman's dynamic programming, there is a partial differential equation (PDE), of first order in the (finite-dimensional) deterministic case and of second or der in the stochastic case. This is known as a Hamilton-Jacobi-Bellman (HJB) equation.


Quantum Interacting Particle Systems

Quantum Interacting Particle Systems

Author: Luigi Accardi

Publisher: World Scientific

Published: 2002-07-19

Total Pages: 357

ISBN-13: 9814487848

DOWNLOAD EBOOK

The problem of extending ideas and results on the dynamics of infinite classical lattice systems to the quantum domain naturally arises in different branches of physics (nonequilibrium statistical mechanics, quantum optics, solid state, …) and new momentum from the development of quantum computer and quantum neural networks (which are in fact interacting arrays of binary systems) has been found.The stochastic limit of quantum theory allowed to deduce, as limits of the usual Hamiltonian systems, a new class of quantum stochastic flows which, when restricted to an appropriate Abelian subalgebra, produces precisely those interacting particle systems studied in classical statistical mechanics.Moreover, in many interesting cases, the underlying classical process “drives” the quantum one, at least as far as ergodicity or convergence to equilibrium are concerned. Thus many deep results concerning classical systems can be directly applied to carry information on the corresponding quantum system. The thermodynamic limit itself is obtained thanks to a technique (the four-semigroup method, new even in the classical case) which reduces the infinitesimal structure of a stochastic flow to that of four semigroups canonically associated to it (Chap. 1).Simple and effective methods to analyze qualitatively the ergodic behavior of quantum Markov semigroups are discussed in Chap. 2.Powerful estimates used to control the infinite volume limit, ergodic behavior and the spectral gap (Gaussian, exponential and hypercontractive bounds, classical and quantum logarithmic Sobolev inequalities, …) are discussed in Chap. 3.


Book Synopsis Quantum Interacting Particle Systems by : Luigi Accardi

Download or read book Quantum Interacting Particle Systems written by Luigi Accardi and published by World Scientific. This book was released on 2002-07-19 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: The problem of extending ideas and results on the dynamics of infinite classical lattice systems to the quantum domain naturally arises in different branches of physics (nonequilibrium statistical mechanics, quantum optics, solid state, …) and new momentum from the development of quantum computer and quantum neural networks (which are in fact interacting arrays of binary systems) has been found.The stochastic limit of quantum theory allowed to deduce, as limits of the usual Hamiltonian systems, a new class of quantum stochastic flows which, when restricted to an appropriate Abelian subalgebra, produces precisely those interacting particle systems studied in classical statistical mechanics.Moreover, in many interesting cases, the underlying classical process “drives” the quantum one, at least as far as ergodicity or convergence to equilibrium are concerned. Thus many deep results concerning classical systems can be directly applied to carry information on the corresponding quantum system. The thermodynamic limit itself is obtained thanks to a technique (the four-semigroup method, new even in the classical case) which reduces the infinitesimal structure of a stochastic flow to that of four semigroups canonically associated to it (Chap. 1).Simple and effective methods to analyze qualitatively the ergodic behavior of quantum Markov semigroups are discussed in Chap. 2.Powerful estimates used to control the infinite volume limit, ergodic behavior and the spectral gap (Gaussian, exponential and hypercontractive bounds, classical and quantum logarithmic Sobolev inequalities, …) are discussed in Chap. 3.


Energy Research Abstracts

Energy Research Abstracts

Author:

Publisher:

Published: 1985

Total Pages: 672

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Energy Research Abstracts by :

Download or read book Energy Research Abstracts written by and published by . This book was released on 1985 with total page 672 pages. Available in PDF, EPUB and Kindle. Book excerpt: