Structure and Dynamics of Membranes

Structure and Dynamics of Membranes

Author: R. Lipowsky

Publisher: Elsevier

Published: 1995-06-15

Total Pages: 537

ISBN-13: 0080541917

DOWNLOAD EBOOK

The first volume of the Handbook deals with the amazing world of biomembranes and lipid bilayers. Part A describes all aspects related to the morphology of these membranes, beginning with the complex architecture of biomembranes, continues with a description of the bizarre morphology of lipid bilayers and concludes with technological applications of these membranes. The first two chapters deal with biomembranes, providing an introduction to the membranes of eucaryotes and a description of the evolution of membranes. The following chapters are concerned with different aspects of lipids including the physical properties of model membranes composed of lipid-protein mixtures, lateralphase separation of lipids and proteins and measurement of lipid-protein bilayer diffusion. Other chapters deal with the flexibility of fluid bilayers, the closure of bilayers into vesicles which attain a large variety of different shapes, and applications of lipid vesicles and liposomes. Part B covers membrane adhesion, membrane fusion and the interaction of biomembranes withpolymer networks such as the cytoskeleton. The first two chapters of this part discuss the generic interactions of membranes from the conceptual point of view. The following two chapters summarize the experimental work on two different bilayer systems. The next chapter deals with the process ofcontact formation, focal bounding and macroscopic contacts between cells. The cytoskeleton within eucaryotic cells consists of a network of relatively stiff filaments of which three different types of filaments have been identified. As explained in the next chapter much has been recently learned aboutthe interaction of these filaments with the cell membrane. The final two chapters deal with membrane fusion.


Book Synopsis Structure and Dynamics of Membranes by : R. Lipowsky

Download or read book Structure and Dynamics of Membranes written by R. Lipowsky and published by Elsevier. This book was released on 1995-06-15 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first volume of the Handbook deals with the amazing world of biomembranes and lipid bilayers. Part A describes all aspects related to the morphology of these membranes, beginning with the complex architecture of biomembranes, continues with a description of the bizarre morphology of lipid bilayers and concludes with technological applications of these membranes. The first two chapters deal with biomembranes, providing an introduction to the membranes of eucaryotes and a description of the evolution of membranes. The following chapters are concerned with different aspects of lipids including the physical properties of model membranes composed of lipid-protein mixtures, lateralphase separation of lipids and proteins and measurement of lipid-protein bilayer diffusion. Other chapters deal with the flexibility of fluid bilayers, the closure of bilayers into vesicles which attain a large variety of different shapes, and applications of lipid vesicles and liposomes. Part B covers membrane adhesion, membrane fusion and the interaction of biomembranes withpolymer networks such as the cytoskeleton. The first two chapters of this part discuss the generic interactions of membranes from the conceptual point of view. The following two chapters summarize the experimental work on two different bilayer systems. The next chapter deals with the process ofcontact formation, focal bounding and macroscopic contacts between cells. The cytoskeleton within eucaryotic cells consists of a network of relatively stiff filaments of which three different types of filaments have been identified. As explained in the next chapter much has been recently learned aboutthe interaction of these filaments with the cell membrane. The final two chapters deal with membrane fusion.


The Physical Chemistry of MEMBRANES

The Physical Chemistry of MEMBRANES

Author: B. Silver

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 413

ISBN-13: 9401096287

DOWNLOAD EBOOK

Ls book is an account of what physical chemistry h . . to say about the structural, electrical and transport properties of biological membranes and their simplest model-the lipid bilayer. The accent throughout is on basic ideas. In contrast to the essentially descriptive ap proach characteristic of texts on membrane biochemistry, our underlying themes are the role of force and entropy in maintaining membrane organization, in determining the electric fields and ionic environment of membranes, and in regulating the passage of molecules and ions across membranes. Although experimental findings will always be the touch stone against which theory will be tried, no attempt is made to present an exhaustive survey of experimental data. On the other hand, there is discussion of the nature and limitations of the results obtainable by the major laboratory techniques. The treatment is at the level of an advanced undergraduate course or an introductory survey suitable for post graduate students carrying out research in biochemistry, biophysics, or physiology. The mathematical demands on the reader are trivial. The few forbidding equations appearing in Chapter 7 are soon whittled away to simple practical expressions. Although the current-voltage characteristics of nerves are traditionally the province of biophysics rather than physical chemistry, certain aspects relevant to the electrical activity of nerves are nevertheless included in this text, namely, mem brane and diffusion potentials and conductivity fluctuations. Where rival theories exist, conflicting convictions have been presented, but not necessarily accorded equal approbation. The author has a viewpoint.


Book Synopsis The Physical Chemistry of MEMBRANES by : B. Silver

Download or read book The Physical Chemistry of MEMBRANES written by B. Silver and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ls book is an account of what physical chemistry h . . to say about the structural, electrical and transport properties of biological membranes and their simplest model-the lipid bilayer. The accent throughout is on basic ideas. In contrast to the essentially descriptive ap proach characteristic of texts on membrane biochemistry, our underlying themes are the role of force and entropy in maintaining membrane organization, in determining the electric fields and ionic environment of membranes, and in regulating the passage of molecules and ions across membranes. Although experimental findings will always be the touch stone against which theory will be tried, no attempt is made to present an exhaustive survey of experimental data. On the other hand, there is discussion of the nature and limitations of the results obtainable by the major laboratory techniques. The treatment is at the level of an advanced undergraduate course or an introductory survey suitable for post graduate students carrying out research in biochemistry, biophysics, or physiology. The mathematical demands on the reader are trivial. The few forbidding equations appearing in Chapter 7 are soon whittled away to simple practical expressions. Although the current-voltage characteristics of nerves are traditionally the province of biophysics rather than physical chemistry, certain aspects relevant to the electrical activity of nerves are nevertheless included in this text, namely, mem brane and diffusion potentials and conductivity fluctuations. Where rival theories exist, conflicting convictions have been presented, but not necessarily accorded equal approbation. The author has a viewpoint.


Structure and Dynamics of Membranes

Structure and Dynamics of Membranes

Author: R. Lipowsky

Publisher: North Holland

Published: 1995-06-29

Total Pages: 1052

ISBN-13: 9780444819758

DOWNLOAD EBOOK

The first volume of the Handbook deals with the amazing world of biomembranes and lipid bilayers. Part A describes all aspects related to the morphology of these membranes, beginning with the complex architecture of biomembranes, continues with a description of the bizarre morphology of lipid bilayers and concludes with technological applications of these membranes. The first two chapters deal with biomembranes, providing an introduction to the membranes of eucaryotes and a description of the evolution of membranes. The following chapters are concerned with different aspects of lipids including the physical properties of model membranes composed of lipid-protein mixtures, lateral phase separation of lipids and proteins and measurement of lipid-protein bilayer diffusion. Other chapters deal with the flexibility of fluid bilayers, the closure of bilayers into vesicles which attain a large variety of different shapes, and applications of lipid vesicles and liposomes. Part B covers membrane adhesion, membrane fusion and the interaction of biomembranes with polymer networks such as the cytoskeleton. The first two chapters of this part discuss the generic interactions of membranes from the conceptual point of view. The following two chapters summarize the experimental work on two different bilayer systems. The next chapter deals with the process of contact formation, focal bounding and macroscopic contacts between cells. The cytoskeleton within eucaryotic cells consists of a network of relatively stiff filaments of which three different types of filaments have been identified. As explained in the next chapter much has been recently learned about the interaction of these filaments with the cell membrane. The final two chapters deal with membrane fusion.


Book Synopsis Structure and Dynamics of Membranes by : R. Lipowsky

Download or read book Structure and Dynamics of Membranes written by R. Lipowsky and published by North Holland. This book was released on 1995-06-29 with total page 1052 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first volume of the Handbook deals with the amazing world of biomembranes and lipid bilayers. Part A describes all aspects related to the morphology of these membranes, beginning with the complex architecture of biomembranes, continues with a description of the bizarre morphology of lipid bilayers and concludes with technological applications of these membranes. The first two chapters deal with biomembranes, providing an introduction to the membranes of eucaryotes and a description of the evolution of membranes. The following chapters are concerned with different aspects of lipids including the physical properties of model membranes composed of lipid-protein mixtures, lateral phase separation of lipids and proteins and measurement of lipid-protein bilayer diffusion. Other chapters deal with the flexibility of fluid bilayers, the closure of bilayers into vesicles which attain a large variety of different shapes, and applications of lipid vesicles and liposomes. Part B covers membrane adhesion, membrane fusion and the interaction of biomembranes with polymer networks such as the cytoskeleton. The first two chapters of this part discuss the generic interactions of membranes from the conceptual point of view. The following two chapters summarize the experimental work on two different bilayer systems. The next chapter deals with the process of contact formation, focal bounding and macroscopic contacts between cells. The cytoskeleton within eucaryotic cells consists of a network of relatively stiff filaments of which three different types of filaments have been identified. As explained in the next chapter much has been recently learned about the interaction of these filaments with the cell membrane. The final two chapters deal with membrane fusion.


Structure and Dynamics of Membranes

Structure and Dynamics of Membranes

Author:

Publisher:

Published: 1995

Total Pages: 1020

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Structure and Dynamics of Membranes by :

Download or read book Structure and Dynamics of Membranes written by and published by . This book was released on 1995 with total page 1020 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Characterization of Biological Membranes

Characterization of Biological Membranes

Author: Mu-Ping Nieh

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2019-07-22

Total Pages: 647

ISBN-13: 3110544652

DOWNLOAD EBOOK

The study of membranes has become of high importance in the fields of biology, pharmaceutical chemistry and medicine, since much of what happens in a cell or in a virus involves biological membranes. The current book is an excellent introduction to the area, which explains how modern analytical methods can be applied to study biological membranes and membrane proteins and the bioprocesses they are involved to.


Book Synopsis Characterization of Biological Membranes by : Mu-Ping Nieh

Download or read book Characterization of Biological Membranes written by Mu-Ping Nieh and published by Walter de Gruyter GmbH & Co KG. This book was released on 2019-07-22 with total page 647 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of membranes has become of high importance in the fields of biology, pharmaceutical chemistry and medicine, since much of what happens in a cell or in a virus involves biological membranes. The current book is an excellent introduction to the area, which explains how modern analytical methods can be applied to study biological membranes and membrane proteins and the bioprocesses they are involved to.


Biological Membranes

Biological Membranes

Author: Kenneth M. Merz

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 596

ISBN-13: 1468485806

DOWNLOAD EBOOK

The interface between a living cell and the surrounding world plays a critical role in numerous complex biological processes. Sperm/egg fusion, virus/cell fusion, exocytosis, endocytosis, and ion permeation are a few examples of processes involving membranes. In recent years, powerful tools such as X-ray crystal lography, electron microscopy, nuclear magnetic resonance, and infra-red and Raman spectroscopy have been developed to characterize the structure and dy namics of biomembranes. Despite this progress, many of the factors responsible for the function of biomembranes are still not well understood. The membrane is a very complicated supramolecular liquid-crystalline structure that is largely composed of lipids, forming a bilayer, to which proteins and other biomolecules are anchored. Often, the lipid bilayer environment is pictured as a hydropho bic structureless slab providing a thermodynamic driving force to partition the amino acids of a membrane protein according to their solubility. However, much of the molecular complexity of the phospholipid bilayer environment is ignored in such a simplified view. It is likely that the atomic details of the polar head group region and the transition from the bulk water to the hydrophobic core of the membrane are important. An understanding of the factors responsible for the function of biomembranes thus requires a better characterization at the molec ular level of how proteins interact with lipid molecules, of how lipids affect protein structure and of how lipid molecules might regulate protein function.


Book Synopsis Biological Membranes by : Kenneth M. Merz

Download or read book Biological Membranes written by Kenneth M. Merz and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: The interface between a living cell and the surrounding world plays a critical role in numerous complex biological processes. Sperm/egg fusion, virus/cell fusion, exocytosis, endocytosis, and ion permeation are a few examples of processes involving membranes. In recent years, powerful tools such as X-ray crystal lography, electron microscopy, nuclear magnetic resonance, and infra-red and Raman spectroscopy have been developed to characterize the structure and dy namics of biomembranes. Despite this progress, many of the factors responsible for the function of biomembranes are still not well understood. The membrane is a very complicated supramolecular liquid-crystalline structure that is largely composed of lipids, forming a bilayer, to which proteins and other biomolecules are anchored. Often, the lipid bilayer environment is pictured as a hydropho bic structureless slab providing a thermodynamic driving force to partition the amino acids of a membrane protein according to their solubility. However, much of the molecular complexity of the phospholipid bilayer environment is ignored in such a simplified view. It is likely that the atomic details of the polar head group region and the transition from the bulk water to the hydrophobic core of the membrane are important. An understanding of the factors responsible for the function of biomembranes thus requires a better characterization at the molec ular level of how proteins interact with lipid molecules, of how lipids affect protein structure and of how lipid molecules might regulate protein function.


Molecular Biology of The Cell

Molecular Biology of The Cell

Author: Bruce Alberts

Publisher:

Published: 2002

Total Pages: 0

ISBN-13: 9780815332183

DOWNLOAD EBOOK


Book Synopsis Molecular Biology of The Cell by : Bruce Alberts

Download or read book Molecular Biology of The Cell written by Bruce Alberts and published by . This book was released on 2002 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Membrane Structure and Dynamics Studied With Neutron Scattering

Membrane Structure and Dynamics Studied With Neutron Scattering

Author: Olaf Holderer

Publisher: Frontiers Media SA

Published: 2021-10-04

Total Pages: 134

ISBN-13: 2889714632

DOWNLOAD EBOOK


Book Synopsis Membrane Structure and Dynamics Studied With Neutron Scattering by : Olaf Holderer

Download or read book Membrane Structure and Dynamics Studied With Neutron Scattering written by Olaf Holderer and published by Frontiers Media SA. This book was released on 2021-10-04 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Physics of Biological Membranes

Physics of Biological Membranes

Author: Patricia Bassereau

Publisher: Springer

Published: 2018-12-30

Total Pages: 623

ISBN-13: 3030006301

DOWNLOAD EBOOK

This book mainly focuses on key aspects of biomembranes that have emerged over the past 15 years. It covers static and dynamic descriptions, as well as modeling for membrane organization and shape at the local and global (at the cell level) scale. It also discusses several new developments in non-equilibrium aspects that have not yet been covered elsewhere. Biological membranes are the seat of interactions between cells and the rest of the world, and internally, they are at the core of complex dynamic reorganizations and chemical reactions. Despite the long tradition of membrane research in biophysics, the physics of cell membranes as well as of biomimetic or synthetic membranes is a rapidly developing field. Though successful books have already been published on this topic over the past decades, none include the most recent advances. Additionally, in this domain, the traditional distinction between biological and physical approaches tends to blur. This book gathers the most recent advances in this area, and will benefit biologists and physicists alike.


Book Synopsis Physics of Biological Membranes by : Patricia Bassereau

Download or read book Physics of Biological Membranes written by Patricia Bassereau and published by Springer. This book was released on 2018-12-30 with total page 623 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book mainly focuses on key aspects of biomembranes that have emerged over the past 15 years. It covers static and dynamic descriptions, as well as modeling for membrane organization and shape at the local and global (at the cell level) scale. It also discusses several new developments in non-equilibrium aspects that have not yet been covered elsewhere. Biological membranes are the seat of interactions between cells and the rest of the world, and internally, they are at the core of complex dynamic reorganizations and chemical reactions. Despite the long tradition of membrane research in biophysics, the physics of cell membranes as well as of biomimetic or synthetic membranes is a rapidly developing field. Though successful books have already been published on this topic over the past decades, none include the most recent advances. Additionally, in this domain, the traditional distinction between biological and physical approaches tends to blur. This book gathers the most recent advances in this area, and will benefit biologists and physicists alike.


Biological Membranes: Structure, Biogenesis and Dynamics

Biological Membranes: Structure, Biogenesis and Dynamics

Author: Jos A.F. Op den Kamp

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 358

ISBN-13: 3642788467

DOWNLOAD EBOOK

The Advanced Study Institute on "Structure, Biogenesis and Dynamics of Biological Membranes, held in Cargese from June 14-26, 1993, has been dealing with four major topics in membrane biochemistry today: lipid dynamics and lipid-protein interactions, protein translocation and insertion, intracellular traffic aud protein structure and folding. The lecturers discussed these topics starting from several disciplines, including biochemistry, cell biology, genetics, and biophysics. This wayan interdisciplinary and very inte~sting view on biological membrane systems was obtained. At first an extensive overview of -mainly biophysical -techniques which can be used to study dynamic processes in membranes was presented. Sophisticated approaches such as ESR and NMR have been applied succesfully to unravel details of specific lipid-protein interactions. x ray analysis provides detailed structural information of several proteins and the possible implications for protein functions. Information obtained this way is complemented by studies on mechanisms and kinetics of protein folding. The latter information is indispensable when discussing protein translocation and insertion: proces:;es in which folding and unfolding play essential roles. Extensive insight was offered in the complicated machinery of phospholipid biosynthesis. In particular, the application of sophisticated genetic techniques has allowed a better understanding of the mechanisms regulating the synthetic machinery and detailed studies on a variety of mutants, lacking one or more of the essential enzymes, have resulted in the beginning of a bL!:


Book Synopsis Biological Membranes: Structure, Biogenesis and Dynamics by : Jos A.F. Op den Kamp

Download or read book Biological Membranes: Structure, Biogenesis and Dynamics written by Jos A.F. Op den Kamp and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Advanced Study Institute on "Structure, Biogenesis and Dynamics of Biological Membranes, held in Cargese from June 14-26, 1993, has been dealing with four major topics in membrane biochemistry today: lipid dynamics and lipid-protein interactions, protein translocation and insertion, intracellular traffic aud protein structure and folding. The lecturers discussed these topics starting from several disciplines, including biochemistry, cell biology, genetics, and biophysics. This wayan interdisciplinary and very inte~sting view on biological membrane systems was obtained. At first an extensive overview of -mainly biophysical -techniques which can be used to study dynamic processes in membranes was presented. Sophisticated approaches such as ESR and NMR have been applied succesfully to unravel details of specific lipid-protein interactions. x ray analysis provides detailed structural information of several proteins and the possible implications for protein functions. Information obtained this way is complemented by studies on mechanisms and kinetics of protein folding. The latter information is indispensable when discussing protein translocation and insertion: proces:;es in which folding and unfolding play essential roles. Extensive insight was offered in the complicated machinery of phospholipid biosynthesis. In particular, the application of sophisticated genetic techniques has allowed a better understanding of the mechanisms regulating the synthetic machinery and detailed studies on a variety of mutants, lacking one or more of the essential enzymes, have resulted in the beginning of a bL!: