Structure of Approximate Solutions of Optimal Control Problems

Structure of Approximate Solutions of Optimal Control Problems

Author: Alexander J. Zaslavski

Publisher: Springer Science & Business Media

Published: 2013-08-04

Total Pages: 133

ISBN-13: 3319012401

DOWNLOAD EBOOK

This title examines the structure of approximate solutions of optimal control problems considered on subintervals of a real line. Specifically at the properties of approximate solutions which are independent of the length of the interval. The results illustrated in this book look into the so-called turnpike property of optimal control problems. The author generalizes the results of the turnpike property by considering a class of optimal control problems which is identified with the corresponding complete metric space of objective functions. This establishes the turnpike property for any element in a set that is in a countable intersection which is open everywhere dense sets in the space of integrands; meaning that the turnpike property holds for most optimal control problems. Mathematicians working in optimal control and the calculus of variations and graduate students will find this book useful and valuable due to its presentation of solutions to a number of difficult problems in optimal control and presentation of new approaches, techniques and methods.


Book Synopsis Structure of Approximate Solutions of Optimal Control Problems by : Alexander J. Zaslavski

Download or read book Structure of Approximate Solutions of Optimal Control Problems written by Alexander J. Zaslavski and published by Springer Science & Business Media. This book was released on 2013-08-04 with total page 133 pages. Available in PDF, EPUB and Kindle. Book excerpt: This title examines the structure of approximate solutions of optimal control problems considered on subintervals of a real line. Specifically at the properties of approximate solutions which are independent of the length of the interval. The results illustrated in this book look into the so-called turnpike property of optimal control problems. The author generalizes the results of the turnpike property by considering a class of optimal control problems which is identified with the corresponding complete metric space of objective functions. This establishes the turnpike property for any element in a set that is in a countable intersection which is open everywhere dense sets in the space of integrands; meaning that the turnpike property holds for most optimal control problems. Mathematicians working in optimal control and the calculus of variations and graduate students will find this book useful and valuable due to its presentation of solutions to a number of difficult problems in optimal control and presentation of new approaches, techniques and methods.


Discrete-Time Optimal Control and Games on Large Intervals

Discrete-Time Optimal Control and Games on Large Intervals

Author: Alexander J. Zaslavski

Publisher: Springer

Published: 2017-04-03

Total Pages: 398

ISBN-13: 3319529323

DOWNLOAD EBOOK

Devoted to the structure of approximate solutions of discrete-time optimal control problems and approximate solutions of dynamic discrete-time two-player zero-sum games, this book presents results on properties of approximate solutions in an interval that is independent lengthwise, for all sufficiently large intervals. Results concerning the so-called turnpike property of optimal control problems and zero-sum games in the regions close to the endpoints of the time intervals are the main focus of this book. The description of the structure of approximate solutions on sufficiently large intervals and its stability will interest graduate students and mathematicians in optimal control and game theory, engineering, and economics. This book begins with a brief overview and moves on to analyze the structure of approximate solutions of autonomous nonconcave discrete-time optimal control Lagrange problems.Next the structures of approximate solutions of autonomous discrete-time optimal control problems that are discrete-time analogs of Bolza problems in calculus of variations are studied. The structures of approximate solutions of two-player zero-sum games are analyzed through standard convexity-concavity assumptions. Finally, turnpike properties for approximate solutions in a class of nonautonomic dynamic discrete-time games with convexity-concavity assumptions are examined.


Book Synopsis Discrete-Time Optimal Control and Games on Large Intervals by : Alexander J. Zaslavski

Download or read book Discrete-Time Optimal Control and Games on Large Intervals written by Alexander J. Zaslavski and published by Springer. This book was released on 2017-04-03 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: Devoted to the structure of approximate solutions of discrete-time optimal control problems and approximate solutions of dynamic discrete-time two-player zero-sum games, this book presents results on properties of approximate solutions in an interval that is independent lengthwise, for all sufficiently large intervals. Results concerning the so-called turnpike property of optimal control problems and zero-sum games in the regions close to the endpoints of the time intervals are the main focus of this book. The description of the structure of approximate solutions on sufficiently large intervals and its stability will interest graduate students and mathematicians in optimal control and game theory, engineering, and economics. This book begins with a brief overview and moves on to analyze the structure of approximate solutions of autonomous nonconcave discrete-time optimal control Lagrange problems.Next the structures of approximate solutions of autonomous discrete-time optimal control problems that are discrete-time analogs of Bolza problems in calculus of variations are studied. The structures of approximate solutions of two-player zero-sum games are analyzed through standard convexity-concavity assumptions. Finally, turnpike properties for approximate solutions in a class of nonautonomic dynamic discrete-time games with convexity-concavity assumptions are examined.


Neural Approximations for Optimal Control and Decision

Neural Approximations for Optimal Control and Decision

Author: Riccardo Zoppoli

Publisher: Springer Nature

Published: 2019-12-17

Total Pages: 532

ISBN-13: 3030296938

DOWNLOAD EBOOK

Neural Approximations for Optimal Control and Decision provides a comprehensive methodology for the approximate solution of functional optimization problems using neural networks and other nonlinear approximators where the use of traditional optimal control tools is prohibited by complicating factors like non-Gaussian noise, strong nonlinearities, large dimension of state and control vectors, etc. Features of the text include: • a general functional optimization framework; • thorough illustration of recent theoretical insights into the approximate solutions of complex functional optimization problems; • comparison of classical and neural-network based methods of approximate solution; • bounds to the errors of approximate solutions; • solution algorithms for optimal control and decision in deterministic or stochastic environments with perfect or imperfect state measurements over a finite or infinite time horizon and with one decision maker or several; • applications of current interest: routing in communications networks, traffic control, water resource management, etc.; and • numerous, numerically detailed examples. The authors’ diverse backgrounds in systems and control theory, approximation theory, machine learning, and operations research lend the book a range of expertise and subject matter appealing to academics and graduate students in any of those disciplines together with computer science and other areas of engineering.


Book Synopsis Neural Approximations for Optimal Control and Decision by : Riccardo Zoppoli

Download or read book Neural Approximations for Optimal Control and Decision written by Riccardo Zoppoli and published by Springer Nature. This book was released on 2019-12-17 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural Approximations for Optimal Control and Decision provides a comprehensive methodology for the approximate solution of functional optimization problems using neural networks and other nonlinear approximators where the use of traditional optimal control tools is prohibited by complicating factors like non-Gaussian noise, strong nonlinearities, large dimension of state and control vectors, etc. Features of the text include: • a general functional optimization framework; • thorough illustration of recent theoretical insights into the approximate solutions of complex functional optimization problems; • comparison of classical and neural-network based methods of approximate solution; • bounds to the errors of approximate solutions; • solution algorithms for optimal control and decision in deterministic or stochastic environments with perfect or imperfect state measurements over a finite or infinite time horizon and with one decision maker or several; • applications of current interest: routing in communications networks, traffic control, water resource management, etc.; and • numerous, numerically detailed examples. The authors’ diverse backgrounds in systems and control theory, approximation theory, machine learning, and operations research lend the book a range of expertise and subject matter appealing to academics and graduate students in any of those disciplines together with computer science and other areas of engineering.


Stability of the Turnpike Phenomenon in Discrete-Time Optimal Control Problems

Stability of the Turnpike Phenomenon in Discrete-Time Optimal Control Problems

Author: Alexander J. Zaslavski

Publisher: Springer

Published: 2014-08-20

Total Pages: 114

ISBN-13: 3319080342

DOWNLOAD EBOOK

The structure of approximate solutions of autonomous discrete-time optimal control problems and individual turnpike results for optimal control problems without convexity (concavity) assumptions are examined in this book. In particular, the book focuses on the properties of approximate solutions which are independent of the length of the interval, for all sufficiently large intervals; these results apply to the so-called turnpike property of the optimal control problems. By encompassing the so-called turnpike property the approximate solutions of the problems are determined primarily by the objective function and are fundamentally independent of the choice of interval and endpoint conditions, except in regions close to the endpoints. This book also explores the turnpike phenomenon for two large classes of autonomous optimal control problems. It is illustrated that the turnpike phenomenon is stable for an optimal control problem if the corresponding infinite horizon optimal control problem possesses an asymptotic turnpike property. If an optimal control problem belonging to the first class possesses the turnpike property, then the turnpike is a singleton (unit set). The stability of the turnpike property under small perturbations of an objective function and of a constraint map is established. For the second class of problems where the turnpike phenomenon is not necessarily a singleton the stability of the turnpike property under small perturbations of an objective function is established. Containing solutions of difficult problems in optimal control and presenting new approaches, techniques and methods this book is of interest for mathematicians working in optimal control and the calculus of variations. It also can be useful in preparation courses for graduate students.


Book Synopsis Stability of the Turnpike Phenomenon in Discrete-Time Optimal Control Problems by : Alexander J. Zaslavski

Download or read book Stability of the Turnpike Phenomenon in Discrete-Time Optimal Control Problems written by Alexander J. Zaslavski and published by Springer. This book was released on 2014-08-20 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: The structure of approximate solutions of autonomous discrete-time optimal control problems and individual turnpike results for optimal control problems without convexity (concavity) assumptions are examined in this book. In particular, the book focuses on the properties of approximate solutions which are independent of the length of the interval, for all sufficiently large intervals; these results apply to the so-called turnpike property of the optimal control problems. By encompassing the so-called turnpike property the approximate solutions of the problems are determined primarily by the objective function and are fundamentally independent of the choice of interval and endpoint conditions, except in regions close to the endpoints. This book also explores the turnpike phenomenon for two large classes of autonomous optimal control problems. It is illustrated that the turnpike phenomenon is stable for an optimal control problem if the corresponding infinite horizon optimal control problem possesses an asymptotic turnpike property. If an optimal control problem belonging to the first class possesses the turnpike property, then the turnpike is a singleton (unit set). The stability of the turnpike property under small perturbations of an objective function and of a constraint map is established. For the second class of problems where the turnpike phenomenon is not necessarily a singleton the stability of the turnpike property under small perturbations of an objective function is established. Containing solutions of difficult problems in optimal control and presenting new approaches, techniques and methods this book is of interest for mathematicians working in optimal control and the calculus of variations. It also can be useful in preparation courses for graduate students.


Optimal Control Problems for Partial Differential Equations on Reticulated Domains

Optimal Control Problems for Partial Differential Equations on Reticulated Domains

Author: Peter I. Kogut

Publisher: Springer Science & Business Media

Published: 2011-09-09

Total Pages: 639

ISBN-13: 0817681493

DOWNLOAD EBOOK

In the development of optimal control, the complexity of the systems to which it is applied has increased significantly, becoming an issue in scientific computing. In order to carry out model-reduction on these systems, the authors of this work have developed a method based on asymptotic analysis. Moving from abstract explanations to examples and applications with a focus on structural network problems, they aim at combining techniques of homogenization and approximation. Optimal Control Problems for Partial Differential Equations on Reticulated Domains is an excellent reference tool for graduate students, researchers, and practitioners in mathematics and areas of engineering involving reticulated domains.


Book Synopsis Optimal Control Problems for Partial Differential Equations on Reticulated Domains by : Peter I. Kogut

Download or read book Optimal Control Problems for Partial Differential Equations on Reticulated Domains written by Peter I. Kogut and published by Springer Science & Business Media. This book was released on 2011-09-09 with total page 639 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the development of optimal control, the complexity of the systems to which it is applied has increased significantly, becoming an issue in scientific computing. In order to carry out model-reduction on these systems, the authors of this work have developed a method based on asymptotic analysis. Moving from abstract explanations to examples and applications with a focus on structural network problems, they aim at combining techniques of homogenization and approximation. Optimal Control Problems for Partial Differential Equations on Reticulated Domains is an excellent reference tool for graduate students, researchers, and practitioners in mathematics and areas of engineering involving reticulated domains.


Optimal Control Problems Arising in Mathematical Economics

Optimal Control Problems Arising in Mathematical Economics

Author: Alexander J. Zaslavski

Publisher: Springer Nature

Published: 2022-06-28

Total Pages: 387

ISBN-13: 981169298X

DOWNLOAD EBOOK

This book is devoted to the study of two large classes of discrete-time optimal control problems arising in mathematical economics. Nonautonomous optimal control problems of the first class are determined by a sequence of objective functions and sequence of constraint maps. They correspond to a general model of economic growth. We are interested in turnpike properties of approximate solutions and in the stability of the turnpike phenomenon under small perturbations of objective functions and constraint maps. The second class of autonomous optimal control problems corresponds to another general class of models of economic dynamics which includes the Robinson–Solow–Srinivasan model as a particular case. In Chap. 1 we discuss turnpike properties for a large class of discrete-time optimal control problems studied in the literature and for the Robinson–Solow–Srinivasan model. In Chap. 2 we introduce the first class of optimal control problems and study its turnpike property. This class of problems is also discussed in Chaps. 3–6. In Chap. 3 we study the stability of the turnpike phenomenon under small perturbations of the objective functions. Analogous results for problems with discounting are considered in Chap. 4. In Chap. 5 we study the stability of the turnpike phenomenon under small perturbations of the objective functions and the constraint maps. Analogous results for problems with discounting are established in Chap. 6. The results of Chaps. 5 and 6 are new. The second class of problems is studied in Chaps. 7–9. In Chap. 7 we study the turnpike properties. The stability of the turnpike phenomenon under small perturbations of the objective functions is established in Chap. 8. In Chap. 9 we establish the stability of the turnpike phenomenon under small perturbations of the objective functions and the constraint maps. The results of Chaps. 8 and 9 are new. In Chap. 10 we study optimal control problems related to a model of knowledge-based endogenous economic growth and show the existence of trajectories of unbounded economic growth and provide estimates for the growth rate.


Book Synopsis Optimal Control Problems Arising in Mathematical Economics by : Alexander J. Zaslavski

Download or read book Optimal Control Problems Arising in Mathematical Economics written by Alexander J. Zaslavski and published by Springer Nature. This book was released on 2022-06-28 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to the study of two large classes of discrete-time optimal control problems arising in mathematical economics. Nonautonomous optimal control problems of the first class are determined by a sequence of objective functions and sequence of constraint maps. They correspond to a general model of economic growth. We are interested in turnpike properties of approximate solutions and in the stability of the turnpike phenomenon under small perturbations of objective functions and constraint maps. The second class of autonomous optimal control problems corresponds to another general class of models of economic dynamics which includes the Robinson–Solow–Srinivasan model as a particular case. In Chap. 1 we discuss turnpike properties for a large class of discrete-time optimal control problems studied in the literature and for the Robinson–Solow–Srinivasan model. In Chap. 2 we introduce the first class of optimal control problems and study its turnpike property. This class of problems is also discussed in Chaps. 3–6. In Chap. 3 we study the stability of the turnpike phenomenon under small perturbations of the objective functions. Analogous results for problems with discounting are considered in Chap. 4. In Chap. 5 we study the stability of the turnpike phenomenon under small perturbations of the objective functions and the constraint maps. Analogous results for problems with discounting are established in Chap. 6. The results of Chaps. 5 and 6 are new. The second class of problems is studied in Chaps. 7–9. In Chap. 7 we study the turnpike properties. The stability of the turnpike phenomenon under small perturbations of the objective functions is established in Chap. 8. In Chap. 9 we establish the stability of the turnpike phenomenon under small perturbations of the objective functions and the constraint maps. The results of Chaps. 8 and 9 are new. In Chap. 10 we study optimal control problems related to a model of knowledge-based endogenous economic growth and show the existence of trajectories of unbounded economic growth and provide estimates for the growth rate.


Optimal Control Problems Arising in Forest Management

Optimal Control Problems Arising in Forest Management

Author: Alexander J. Zaslavski

Publisher: Springer

Published: 2019-08-16

Total Pages: 136

ISBN-13: 3030235874

DOWNLOAD EBOOK

This book is devoted to the study of optimal control problems arising in forest management, an important and fascinating topic in mathematical economics studied by many researchers over the years. The volume studies the forest management problem by analyzing a class of optimal control problems that contains it and showing the existence of optimal solutions over infinite horizon. It also studies the structure of approximate solutions on finite intervals and their turnpike properties, as well as the stability of the turnpike phenomenon and the structure of approximate solutions on finite intervals in the regions close to the end points. The book is intended for mathematicians interested in the optimization theory, optimal control and their applications to the economic theory.


Book Synopsis Optimal Control Problems Arising in Forest Management by : Alexander J. Zaslavski

Download or read book Optimal Control Problems Arising in Forest Management written by Alexander J. Zaslavski and published by Springer. This book was released on 2019-08-16 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to the study of optimal control problems arising in forest management, an important and fascinating topic in mathematical economics studied by many researchers over the years. The volume studies the forest management problem by analyzing a class of optimal control problems that contains it and showing the existence of optimal solutions over infinite horizon. It also studies the structure of approximate solutions on finite intervals and their turnpike properties, as well as the stability of the turnpike phenomenon and the structure of approximate solutions on finite intervals in the regions close to the end points. The book is intended for mathematicians interested in the optimization theory, optimal control and their applications to the economic theory.


Nonconvex Optimal Control and Variational Problems

Nonconvex Optimal Control and Variational Problems

Author: Alexander J. Zaslavski

Publisher: Springer Science & Business Media

Published: 2013-06-12

Total Pages: 382

ISBN-13: 1461473780

DOWNLOAD EBOOK

Nonconvex Optimal Control and Variational Problems is an important contribution to the existing literature in the field and is devoted to the presentation of progress made in the last 15 years of research in the area of optimal control and the calculus of variations. This volume contains a number of results concerning well-posedness of optimal control and variational problems, nonoccurrence of the Lavrentiev phenomenon for optimal control and variational problems, and turnpike properties of approximate solutions of variational problems. Chapter 1 contains an introduction as well as examples of select topics. Chapters 2-5 consider the well-posedness condition using fine tools of general topology and porosity. Chapters 6-8 are devoted to the nonoccurrence of the Lavrentiev phenomenon and contain original results. Chapter 9 focuses on infinite-dimensional linear control problems, and Chapter 10 deals with “good” functions and explores new understandings on the questions of optimality and variational problems. Finally, Chapters 11-12 are centered around the turnpike property, a particular area of expertise for the author. This volume is intended for mathematicians, engineers, and scientists interested in the calculus of variations, optimal control, optimization, and applied functional analysis, as well as both undergraduate and graduate students specializing in those areas. The text devoted to Turnpike properties may be of particular interest to the economics community.


Book Synopsis Nonconvex Optimal Control and Variational Problems by : Alexander J. Zaslavski

Download or read book Nonconvex Optimal Control and Variational Problems written by Alexander J. Zaslavski and published by Springer Science & Business Media. This book was released on 2013-06-12 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonconvex Optimal Control and Variational Problems is an important contribution to the existing literature in the field and is devoted to the presentation of progress made in the last 15 years of research in the area of optimal control and the calculus of variations. This volume contains a number of results concerning well-posedness of optimal control and variational problems, nonoccurrence of the Lavrentiev phenomenon for optimal control and variational problems, and turnpike properties of approximate solutions of variational problems. Chapter 1 contains an introduction as well as examples of select topics. Chapters 2-5 consider the well-posedness condition using fine tools of general topology and porosity. Chapters 6-8 are devoted to the nonoccurrence of the Lavrentiev phenomenon and contain original results. Chapter 9 focuses on infinite-dimensional linear control problems, and Chapter 10 deals with “good” functions and explores new understandings on the questions of optimality and variational problems. Finally, Chapters 11-12 are centered around the turnpike property, a particular area of expertise for the author. This volume is intended for mathematicians, engineers, and scientists interested in the calculus of variations, optimal control, optimization, and applied functional analysis, as well as both undergraduate and graduate students specializing in those areas. The text devoted to Turnpike properties may be of particular interest to the economics community.


Optimal Control of Differential and Functional Equations

Optimal Control of Differential and Functional Equations

Author: J. Warga

Publisher: Academic Press

Published: 2014-05-10

Total Pages: 546

ISBN-13: 1483259196

DOWNLOAD EBOOK

Optimal Control of Differential and Functional Equations presents a mathematical theory of deterministic optimal control, with emphasis on problems involving functional-integral equations and functional restrictions. The book reviews analytical foundations, and discusses deterministic optimal control problems requiring original, approximate, or relaxed solutions. Original solutions involve mathematicians, and approximate solutions concern engineers. Relaxed solutions yield a complete theory that encompasses both existence theorems and necessary conditions. The text also presents general optimal control problems, optimal control of ordinary differential equations, and different types of functional-integral equations. The book discusses control problems defined by equations in Banach spaces, the convex cost functionals, and the weak necessary conditions for an original minimum. The text illustrates a class of ordinary differential problems with examples, and explains some conflicting control problems with relaxed adverse controls, as well as conflicting control problems with hyper-relaxed adverse controls. The book is intended for mature mathematicians, graduate students in analysis, and practitioners of optimal control whose primary interests and training are in science or engineering.


Book Synopsis Optimal Control of Differential and Functional Equations by : J. Warga

Download or read book Optimal Control of Differential and Functional Equations written by J. Warga and published by Academic Press. This book was released on 2014-05-10 with total page 546 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimal Control of Differential and Functional Equations presents a mathematical theory of deterministic optimal control, with emphasis on problems involving functional-integral equations and functional restrictions. The book reviews analytical foundations, and discusses deterministic optimal control problems requiring original, approximate, or relaxed solutions. Original solutions involve mathematicians, and approximate solutions concern engineers. Relaxed solutions yield a complete theory that encompasses both existence theorems and necessary conditions. The text also presents general optimal control problems, optimal control of ordinary differential equations, and different types of functional-integral equations. The book discusses control problems defined by equations in Banach spaces, the convex cost functionals, and the weak necessary conditions for an original minimum. The text illustrates a class of ordinary differential problems with examples, and explains some conflicting control problems with relaxed adverse controls, as well as conflicting control problems with hyper-relaxed adverse controls. The book is intended for mature mathematicians, graduate students in analysis, and practitioners of optimal control whose primary interests and training are in science or engineering.


Optimal Design of Control Systems

Optimal Design of Control Systems

Author: Gennadii E. Kolosov

Publisher: CRC Press

Published: 2020-08-27

Total Pages: 424

ISBN-13: 1000146758

DOWNLOAD EBOOK

"Covers design methods for optimal (or quasioptimal) control algorithms in the form of synthesis for deterministic and stochastic dynamical systems-with applications in aerospace, robotic, and servomechanical technologies. Providing new results on exact and approximate solutions of optimal control problems."


Book Synopsis Optimal Design of Control Systems by : Gennadii E. Kolosov

Download or read book Optimal Design of Control Systems written by Gennadii E. Kolosov and published by CRC Press. This book was released on 2020-08-27 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Covers design methods for optimal (or quasioptimal) control algorithms in the form of synthesis for deterministic and stochastic dynamical systems-with applications in aerospace, robotic, and servomechanical technologies. Providing new results on exact and approximate solutions of optimal control problems."