Substrate Noise Coupling in Analog/RF Circuits

Substrate Noise Coupling in Analog/RF Circuits

Author: Stephane Bronckers

Publisher: Artech House

Published: 2010

Total Pages: 272

ISBN-13: 1596932724

DOWNLOAD EBOOK

This book presents case studies to illustrate that careful modeling of the assembly characteristics and layout details is required to bring simulations and measurements into agreement. Engineers learn how to use a proper combination of isolation structures and circuit techniques to make analog/RF circuits more immune to substrate noise. Topics include substrate noise propagation, passive isolation structures, noise couple in active devices, measuring the coupling mechanisms in analog/RF circuits, prediction of the impact of substrate noise on analog/RF circuits, and noise coupling in analog/RF systems.


Book Synopsis Substrate Noise Coupling in Analog/RF Circuits by : Stephane Bronckers

Download or read book Substrate Noise Coupling in Analog/RF Circuits written by Stephane Bronckers and published by Artech House. This book was released on 2010 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents case studies to illustrate that careful modeling of the assembly characteristics and layout details is required to bring simulations and measurements into agreement. Engineers learn how to use a proper combination of isolation structures and circuit techniques to make analog/RF circuits more immune to substrate noise. Topics include substrate noise propagation, passive isolation structures, noise couple in active devices, measuring the coupling mechanisms in analog/RF circuits, prediction of the impact of substrate noise on analog/RF circuits, and noise coupling in analog/RF systems.


Substrate Noise Coupling in RFICs

Substrate Noise Coupling in RFICs

Author: Ahmed Helmy

Publisher: Springer Science & Business Media

Published: 2008-03-23

Total Pages: 129

ISBN-13: 1402081669

DOWNLOAD EBOOK

The book reports modeling and simulation techniques for substrate noise coupling effects in RFICs and introduces isolation structures and design guides to mitigate such effects with the ultimate goal of enhancing the yield of RF and mixed signal SoCs. The book further reports silicon measurements, and new test and noise isolation structures. To the authors’ knowledge, this is the first title devoted to the topic of substrate noise coupling in RFICs as part of a large SoC.


Book Synopsis Substrate Noise Coupling in RFICs by : Ahmed Helmy

Download or read book Substrate Noise Coupling in RFICs written by Ahmed Helmy and published by Springer Science & Business Media. This book was released on 2008-03-23 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book reports modeling and simulation techniques for substrate noise coupling effects in RFICs and introduces isolation structures and design guides to mitigate such effects with the ultimate goal of enhancing the yield of RF and mixed signal SoCs. The book further reports silicon measurements, and new test and noise isolation structures. To the authors’ knowledge, this is the first title devoted to the topic of substrate noise coupling in RFICs as part of a large SoC.


Substrate Noise Coupling in Mixed-Signal ASICs

Substrate Noise Coupling in Mixed-Signal ASICs

Author: Stéphane Donnay

Publisher: Springer Science & Business Media

Published: 2006-05-31

Total Pages: 311

ISBN-13: 0306481707

DOWNLOAD EBOOK

This book is the first in a series of three dedicated to advanced topics in Mixed-Signal IC design methodologies. It is one of the results achieved by the Mixed-Signal Design Cluster, an initiative launched in 1998 as part of the TARDIS project, funded by the European Commission within the ESPRIT-IV Framework. This initiative aims to promote the development of new design and test methodologies for Mixed-Signal ICs, and to accelerate their adoption by industrial users. As Microelectronics evolves, Mixed-Signal techniques are gaining a significant importance due to the wide spread of applications where an analog front-end is needed to drive a complex digital-processing subsystem. In this sense, Analog and Mixed-Signal circuits are recognized as a bottleneck for the market acceptance of Systems-On-Chip, because of the inherent difficulties involved in the design and test of these circuits. Specially, problems arising from the use of a common substrate for analog and digital components are a main limiting factor. The Mixed-Signal Cluster has been formed by a group of 11 Research and Development projects, plus a specific action to promote the dissemination of design methodologies, techniques, and supporting tools developed within the Cluster projects. The whole action, ending in July 2002, has been assigned an overall budget of more than 8 million EURO.


Book Synopsis Substrate Noise Coupling in Mixed-Signal ASICs by : Stéphane Donnay

Download or read book Substrate Noise Coupling in Mixed-Signal ASICs written by Stéphane Donnay and published by Springer Science & Business Media. This book was released on 2006-05-31 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first in a series of three dedicated to advanced topics in Mixed-Signal IC design methodologies. It is one of the results achieved by the Mixed-Signal Design Cluster, an initiative launched in 1998 as part of the TARDIS project, funded by the European Commission within the ESPRIT-IV Framework. This initiative aims to promote the development of new design and test methodologies for Mixed-Signal ICs, and to accelerate their adoption by industrial users. As Microelectronics evolves, Mixed-Signal techniques are gaining a significant importance due to the wide spread of applications where an analog front-end is needed to drive a complex digital-processing subsystem. In this sense, Analog and Mixed-Signal circuits are recognized as a bottleneck for the market acceptance of Systems-On-Chip, because of the inherent difficulties involved in the design and test of these circuits. Specially, problems arising from the use of a common substrate for analog and digital components are a main limiting factor. The Mixed-Signal Cluster has been formed by a group of 11 Research and Development projects, plus a specific action to promote the dissemination of design methodologies, techniques, and supporting tools developed within the Cluster projects. The whole action, ending in July 2002, has been assigned an overall budget of more than 8 million EURO.


Characterization of Substrate Noise Coupling, Its Impacts and Remedies in RF and Mixed-signal ICs

Characterization of Substrate Noise Coupling, Its Impacts and Remedies in RF and Mixed-signal ICs

Author: Ahmed Helmy

Publisher:

Published: 2006

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Abstract: Substrate noise coupling in integrated circuits is the process by which interference signals generated by high speed digital blocks cause parasitic currents to flow in the silicon substrate and couple devices in various parts of the circuits on this common substrate. In RFIC the switching noise couples to the sensitive analog circuits through the substrate causing degradation in performance and yield hit. Overcoming substrate coupling is a key issue in successful "system on chip" integration. In this thesis a substrate aware design flow is built, calibrated to silicon and used as part of the design flow to uncover substrate coupling problems in RFICs in the design phase. The flow is used to develop the first comprehensive RF substrate noise isolation design guide to be used by RF designers during the design phase. This will allow designers to optimize the design to maximize noise isolation and protect sensitive blocks from being degraded by substrate noise coupling. Several effects of substrate coupling on circuit performance will be identified and remedies will be given based on the design guide. Three case studies are designed to analyze the substrate coupling problem in RFICs. The case studies are designed to attack the problem from the device, circuit and system levels. On the device level a special emphasis is given to designing on chip inductors as an important device in RFIC. An accurate model is developed for a broadband fit of the inductor scattering parameters. This model is shown to be scalable and is proven to be accurate across various frequency bands and geometries. A special emphasis is put on the design for manufacturing effects that affect the design robustness. A circuit level case study is developed and results are compared to simulations and measurements to highlight the need for such a flow before tapping out to ensure a yielding part. The system level problem studied is a GSM receiver where the research results are directly applied to it as a demonstration vehicle to debug and resolve a system level substrate noise coupling problem that otherwise caused a product to be on the edge of malfunction.


Book Synopsis Characterization of Substrate Noise Coupling, Its Impacts and Remedies in RF and Mixed-signal ICs by : Ahmed Helmy

Download or read book Characterization of Substrate Noise Coupling, Its Impacts and Remedies in RF and Mixed-signal ICs written by Ahmed Helmy and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: Substrate noise coupling in integrated circuits is the process by which interference signals generated by high speed digital blocks cause parasitic currents to flow in the silicon substrate and couple devices in various parts of the circuits on this common substrate. In RFIC the switching noise couples to the sensitive analog circuits through the substrate causing degradation in performance and yield hit. Overcoming substrate coupling is a key issue in successful "system on chip" integration. In this thesis a substrate aware design flow is built, calibrated to silicon and used as part of the design flow to uncover substrate coupling problems in RFICs in the design phase. The flow is used to develop the first comprehensive RF substrate noise isolation design guide to be used by RF designers during the design phase. This will allow designers to optimize the design to maximize noise isolation and protect sensitive blocks from being degraded by substrate noise coupling. Several effects of substrate coupling on circuit performance will be identified and remedies will be given based on the design guide. Three case studies are designed to analyze the substrate coupling problem in RFICs. The case studies are designed to attack the problem from the device, circuit and system levels. On the device level a special emphasis is given to designing on chip inductors as an important device in RFIC. An accurate model is developed for a broadband fit of the inductor scattering parameters. This model is shown to be scalable and is proven to be accurate across various frequency bands and geometries. A special emphasis is put on the design for manufacturing effects that affect the design robustness. A circuit level case study is developed and results are compared to simulations and measurements to highlight the need for such a flow before tapping out to ensure a yielding part. The system level problem studied is a GSM receiver where the research results are directly applied to it as a demonstration vehicle to debug and resolve a system level substrate noise coupling problem that otherwise caused a product to be on the edge of malfunction.


Noise Coupling in System-on-Chip

Noise Coupling in System-on-Chip

Author: Thomas Noulis

Publisher: CRC Press

Published: 2018-01-09

Total Pages: 519

ISBN-13: 1138031615

DOWNLOAD EBOOK

Noise Coupling is the root-cause of the majority of Systems on Chip (SoC) product fails. The book discusses a breakthrough substrate coupling analysis flow and modelling toolset, addressing the needs of the design community. The flow provides capability to analyze noise components, propagating through the substrate, the parasitic interconnects and the package. Using this book, the reader can analyze and avoid complex noise coupling that degrades RF and mixed signal design performance, while reducing the need for conservative design practices. With chapters written by leading international experts in the field, novel methodologies are provided to identify noise coupling in silicon. It additionally features case studies that can be found in any modern CMOS SoC product for mobile communications, automotive applications and readout front ends.


Book Synopsis Noise Coupling in System-on-Chip by : Thomas Noulis

Download or read book Noise Coupling in System-on-Chip written by Thomas Noulis and published by CRC Press. This book was released on 2018-01-09 with total page 519 pages. Available in PDF, EPUB and Kindle. Book excerpt: Noise Coupling is the root-cause of the majority of Systems on Chip (SoC) product fails. The book discusses a breakthrough substrate coupling analysis flow and modelling toolset, addressing the needs of the design community. The flow provides capability to analyze noise components, propagating through the substrate, the parasitic interconnects and the package. Using this book, the reader can analyze and avoid complex noise coupling that degrades RF and mixed signal design performance, while reducing the need for conservative design practices. With chapters written by leading international experts in the field, novel methodologies are provided to identify noise coupling in silicon. It additionally features case studies that can be found in any modern CMOS SoC product for mobile communications, automotive applications and readout front ends.


Substrate Noise

Substrate Noise

Author: Edoardo Charbon

Publisher: Springer Science & Business Media

Published: 2007-05-08

Total Pages: 178

ISBN-13: 0306481715

DOWNLOAD EBOOK

In the past decade, substrate noise has had a constant and significant impact on the design of analog and mixed-signal integrated circuits. Only recently, with advances in chip miniaturization and innovative circuit design, has substrate noise begun to plague fully digital circuits as well. To combat the effects of substrate noise, heavily over-designed structures are generally adopted, thus seriously limiting the advantages of innovative technologies. Substrate Noise: Analysis and Optimization for IC Design addresses the main problems posed by substrate noise from both an IC and a CAD designer perspective. The effects of substrate noise on performance in digital, analog, and mixed-signal circuits are presented, along with the mechanisms underlying noise generation, injection, and transport. Popular solutions to the substrate noise problem and the trade-offs often debated by designers are extensively discussed. Non-traditional approaches as well as semi-automated techniques to combat substrate noise are also addressed. Substrate Noise: Analysis and Optimization for IC Design will be of interest to researchers and professionals interested in signal integrity, as well as to mixed signal and RF designers.


Book Synopsis Substrate Noise by : Edoardo Charbon

Download or read book Substrate Noise written by Edoardo Charbon and published by Springer Science & Business Media. This book was released on 2007-05-08 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the past decade, substrate noise has had a constant and significant impact on the design of analog and mixed-signal integrated circuits. Only recently, with advances in chip miniaturization and innovative circuit design, has substrate noise begun to plague fully digital circuits as well. To combat the effects of substrate noise, heavily over-designed structures are generally adopted, thus seriously limiting the advantages of innovative technologies. Substrate Noise: Analysis and Optimization for IC Design addresses the main problems posed by substrate noise from both an IC and a CAD designer perspective. The effects of substrate noise on performance in digital, analog, and mixed-signal circuits are presented, along with the mechanisms underlying noise generation, injection, and transport. Popular solutions to the substrate noise problem and the trade-offs often debated by designers are extensively discussed. Non-traditional approaches as well as semi-automated techniques to combat substrate noise are also addressed. Substrate Noise: Analysis and Optimization for IC Design will be of interest to researchers and professionals interested in signal integrity, as well as to mixed signal and RF designers.


Substrate Noise Analysis in RF Integrated Circuits

Substrate Noise Analysis in RF Integrated Circuits

Author:

Publisher:

Published: 2004

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Substrate coupling in integrated circuits is the process whereby, parasitic current flow in the substrate, electrically couples devices in different parts of the circuit. Higher levels of integration and higher frequencies of operation makes the coupling more pronounced in modern circuit realizations. Electrical coupling in the substrate leads to undesirable interaction between devices which can degrade circuit performance. The degradation can manifest itself in different ways. In mixed analog-digital circuits, for example, the switching-noise generated by digital circuits can be coupled to sensitive analog circuits through the substrate. Performance degradation due to substrate coupling can be addressed at the circuit design stage by including substrate models in circuit analysis. Analytical models based on simple substrate resistance plots are developed. Trends in substrate resistance variation for different substrates are studied to understand its effect at the circuit level. Analytical model for measurement of substrate coupling at the circuit level based on substrate resistance information and other circuit parameters is developed. Efficient techniques to improve isolation based on simulation and analysis of the substrate model are discussed.


Book Synopsis Substrate Noise Analysis in RF Integrated Circuits by :

Download or read book Substrate Noise Analysis in RF Integrated Circuits written by and published by . This book was released on 2004 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Substrate coupling in integrated circuits is the process whereby, parasitic current flow in the substrate, electrically couples devices in different parts of the circuit. Higher levels of integration and higher frequencies of operation makes the coupling more pronounced in modern circuit realizations. Electrical coupling in the substrate leads to undesirable interaction between devices which can degrade circuit performance. The degradation can manifest itself in different ways. In mixed analog-digital circuits, for example, the switching-noise generated by digital circuits can be coupled to sensitive analog circuits through the substrate. Performance degradation due to substrate coupling can be addressed at the circuit design stage by including substrate models in circuit analysis. Analytical models based on simple substrate resistance plots are developed. Trends in substrate resistance variation for different substrates are studied to understand its effect at the circuit level. Analytical model for measurement of substrate coupling at the circuit level based on substrate resistance information and other circuit parameters is developed. Efficient techniques to improve isolation based on simulation and analysis of the substrate model are discussed.


Analysis and Solutions for Switching Noise Coupling in Mixed-Signal ICs

Analysis and Solutions for Switching Noise Coupling in Mixed-Signal ICs

Author: X. Aragones

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 242

ISBN-13: 1475730136

DOWNLOAD EBOOK

Modern microelectronic design is characterized by the integration of full systems on a single die. These systems often include large high performance digital circuitry, high resolution analog parts, high driving I/O, and maybe RF sections. Designers of such systems are constantly faced with the challenge to achieve compatibility in electrical characteristics of every section: some circuitry presents fast transients and large consumption spikes, whereas others require quiet environments to achieve resolutions well beyond millivolts. Coupling between those sections is usually unavoidable, since the entire system shares the same silicon substrate bulk and the same package. Understanding the way coupling is produced, and knowing methods to isolate coupled circuitry, and how to apply every method, is then mandatory knowledge for every IC designer. Analysis and Solutions for Switching Noise Coupling in Mixed-Signal ICs is an in-depth look at coupling through the common silicon substrate, and noise at the power supply lines. It explains the elementary knowledge needed to understand these phenomena and presents a review of previous works and new research results. The aim is to provide an understanding of the reasons for these particular ways of coupling, review and suggest solutions to noise coupling, and provide criteria to apply noise reduction. Analysis and Solutions for Switching Noise Coupling in Mixed-Signal ICs is an ideal book, both as introductory material to noise-coupling problems in mixed-signal ICs, and for more advanced designers facing this problem.


Book Synopsis Analysis and Solutions for Switching Noise Coupling in Mixed-Signal ICs by : X. Aragones

Download or read book Analysis and Solutions for Switching Noise Coupling in Mixed-Signal ICs written by X. Aragones and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern microelectronic design is characterized by the integration of full systems on a single die. These systems often include large high performance digital circuitry, high resolution analog parts, high driving I/O, and maybe RF sections. Designers of such systems are constantly faced with the challenge to achieve compatibility in electrical characteristics of every section: some circuitry presents fast transients and large consumption spikes, whereas others require quiet environments to achieve resolutions well beyond millivolts. Coupling between those sections is usually unavoidable, since the entire system shares the same silicon substrate bulk and the same package. Understanding the way coupling is produced, and knowing methods to isolate coupled circuitry, and how to apply every method, is then mandatory knowledge for every IC designer. Analysis and Solutions for Switching Noise Coupling in Mixed-Signal ICs is an in-depth look at coupling through the common silicon substrate, and noise at the power supply lines. It explains the elementary knowledge needed to understand these phenomena and presents a review of previous works and new research results. The aim is to provide an understanding of the reasons for these particular ways of coupling, review and suggest solutions to noise coupling, and provide criteria to apply noise reduction. Analysis and Solutions for Switching Noise Coupling in Mixed-Signal ICs is an ideal book, both as introductory material to noise-coupling problems in mixed-signal ICs, and for more advanced designers facing this problem.


Analog Circuit Design

Analog Circuit Design

Author: Johan Huijsing

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 410

ISBN-13: 1475729839

DOWNLOAD EBOOK

This volume of Analog Circuit Design concentrates on three topics: Volt Electronics; Design and Implementation of Mixed-Mode Systems; Low-Noise and RF Power Amplifiers for Telecommunication. The book comprises six papers on each topic written by internationally recognised experts. These papers are tutorial in nature and together make a substantial contribution to improving the design of analog circuits. The book is divided into three parts: Part I, Volt Electronics, presents some of the circuit design challenges which are having to be met as the need for more electronics on a chip forces smaller transistor dimensions, and thus lower breakdown voltages. The papers cover techniques for 1-Volt electronics. Part II, Design and Implementation of Mixed-Mode Systems, deals with the various problems that are encountered in mixed analog-digital design. In the future, all integrated circuits are bound to contain both digital and analog sub-blocks. Problems such as substrate bounce and other substrate coupling effects cause deterioration in signal integrity. Both aspects of mixed-signal design have been addressed in this section and it illustrates that careful layout techniques embedded in a hierarchical design methodology can allow us to cope with most of the challenges presented by mixed analog-digital design. Part III, Low-noise and RF Power Amplifiers for Telecommunication, focuses on telecommunications systems. In these systems low-noise amplifiers are front-ends of receiver designs. At the transmitter part a high-performance, high-efficiency power amplifier is a critical design. Examples of both system parts are described in this section. Analog Circuit Design is an essential reference source for analog design engineers and researchers wishing to keep abreast with the latest developments in the field. The tutorial nature of the contributions also makes it suitable for use in an advanced course.


Book Synopsis Analog Circuit Design by : Johan Huijsing

Download or read book Analog Circuit Design written by Johan Huijsing and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume of Analog Circuit Design concentrates on three topics: Volt Electronics; Design and Implementation of Mixed-Mode Systems; Low-Noise and RF Power Amplifiers for Telecommunication. The book comprises six papers on each topic written by internationally recognised experts. These papers are tutorial in nature and together make a substantial contribution to improving the design of analog circuits. The book is divided into three parts: Part I, Volt Electronics, presents some of the circuit design challenges which are having to be met as the need for more electronics on a chip forces smaller transistor dimensions, and thus lower breakdown voltages. The papers cover techniques for 1-Volt electronics. Part II, Design and Implementation of Mixed-Mode Systems, deals with the various problems that are encountered in mixed analog-digital design. In the future, all integrated circuits are bound to contain both digital and analog sub-blocks. Problems such as substrate bounce and other substrate coupling effects cause deterioration in signal integrity. Both aspects of mixed-signal design have been addressed in this section and it illustrates that careful layout techniques embedded in a hierarchical design methodology can allow us to cope with most of the challenges presented by mixed analog-digital design. Part III, Low-noise and RF Power Amplifiers for Telecommunication, focuses on telecommunications systems. In these systems low-noise amplifiers are front-ends of receiver designs. At the transmitter part a high-performance, high-efficiency power amplifier is a critical design. Examples of both system parts are described in this section. Analog Circuit Design is an essential reference source for analog design engineers and researchers wishing to keep abreast with the latest developments in the field. The tutorial nature of the contributions also makes it suitable for use in an advanced course.


Modeling of Substrate Noise Coupling in Mixed-signal Integrated Circuits

Modeling of Substrate Noise Coupling in Mixed-signal Integrated Circuits

Author: Nawej Mwez

Publisher:

Published: 2002

Total Pages: 234

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Modeling of Substrate Noise Coupling in Mixed-signal Integrated Circuits by : Nawej Mwez

Download or read book Modeling of Substrate Noise Coupling in Mixed-signal Integrated Circuits written by Nawej Mwez and published by . This book was released on 2002 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: