Symmetries and Group Theory in Particle Physics

Symmetries and Group Theory in Particle Physics

Author: Giovanni Costa

Publisher: Springer

Published: 2012-02-03

Total Pages: 300

ISBN-13: 3642154824

DOWNLOAD EBOOK

Symmetries, coupled with the mathematical concept of group theory, are an essential conceptual backbone in the formulation of quantum field theories capable of describing the world of elementary particles. This primer is an introduction to and survey of the underlying concepts and structures needed in order to understand and handle these powerful tools. Specifically, in Part I of the book the symmetries and related group theoretical structures of the Minkowskian space-time manifold are analyzed, while Part II examines the internal symmetries and their related unitary groups, where the interactions between fundamental particles are encoded as we know them from the present standard model of particle physics. This book, based on several courses given by the authors, addresses advanced graduate students and non-specialist researchers wishing to enter active research in the field, and having a working knowledge of classical field theory and relativistic quantum mechanics. Numerous end-of-chapter problems and their solutions will facilitate the use of this book as self-study guide or as course book for topical lectures.


Book Synopsis Symmetries and Group Theory in Particle Physics by : Giovanni Costa

Download or read book Symmetries and Group Theory in Particle Physics written by Giovanni Costa and published by Springer. This book was released on 2012-02-03 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Symmetries, coupled with the mathematical concept of group theory, are an essential conceptual backbone in the formulation of quantum field theories capable of describing the world of elementary particles. This primer is an introduction to and survey of the underlying concepts and structures needed in order to understand and handle these powerful tools. Specifically, in Part I of the book the symmetries and related group theoretical structures of the Minkowskian space-time manifold are analyzed, while Part II examines the internal symmetries and their related unitary groups, where the interactions between fundamental particles are encoded as we know them from the present standard model of particle physics. This book, based on several courses given by the authors, addresses advanced graduate students and non-specialist researchers wishing to enter active research in the field, and having a working knowledge of classical field theory and relativistic quantum mechanics. Numerous end-of-chapter problems and their solutions will facilitate the use of this book as self-study guide or as course book for topical lectures.


An Introduction to Non-Abelian Discrete Symmetries for Particle Physicists

An Introduction to Non-Abelian Discrete Symmetries for Particle Physicists

Author: Hajime Ishimori

Publisher: Springer

Published: 2012-07-25

Total Pages: 283

ISBN-13: 3642308058

DOWNLOAD EBOOK

These lecture notes provide a tutorial review of non-Abelian discrete groups and show some applications to issues in physics where discrete symmetries constitute an important principle for model building in particle physics. While Abelian discrete symmetries are often imposed in order to control couplings for particle physics - in particular model building beyond the standard model - non-Abelian discrete symmetries have been applied to understand the three-generation flavor structure in particular. Indeed, non-Abelian discrete symmetries are considered to be the most attractive choice for the flavor sector: model builders have tried to derive experimental values of quark and lepton masses, and mixing angles by assuming non-Abelian discrete flavor symmetries of quarks and leptons, yet, lepton mixing has already been intensively discussed in this context, as well. The possible origins of the non-Abelian discrete symmetry for flavors is another topic of interest, as they can arise from an underlying theory - e.g. the string theory or compactification via orbifolding – thereby providing a possible bridge between the underlying theory and the corresponding low-energy sector of particle physics. This text explicitly introduces and studies the group-theoretical aspects of many concrete groups and shows how to derive conjugacy classes, characters, representations, and tensor products for these groups (with a finite number) when algebraic relations are given, thereby enabling readers to apply this to other groups of interest.


Book Synopsis An Introduction to Non-Abelian Discrete Symmetries for Particle Physicists by : Hajime Ishimori

Download or read book An Introduction to Non-Abelian Discrete Symmetries for Particle Physicists written by Hajime Ishimori and published by Springer. This book was released on 2012-07-25 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: These lecture notes provide a tutorial review of non-Abelian discrete groups and show some applications to issues in physics where discrete symmetries constitute an important principle for model building in particle physics. While Abelian discrete symmetries are often imposed in order to control couplings for particle physics - in particular model building beyond the standard model - non-Abelian discrete symmetries have been applied to understand the three-generation flavor structure in particular. Indeed, non-Abelian discrete symmetries are considered to be the most attractive choice for the flavor sector: model builders have tried to derive experimental values of quark and lepton masses, and mixing angles by assuming non-Abelian discrete flavor symmetries of quarks and leptons, yet, lepton mixing has already been intensively discussed in this context, as well. The possible origins of the non-Abelian discrete symmetry for flavors is another topic of interest, as they can arise from an underlying theory - e.g. the string theory or compactification via orbifolding – thereby providing a possible bridge between the underlying theory and the corresponding low-energy sector of particle physics. This text explicitly introduces and studies the group-theoretical aspects of many concrete groups and shows how to derive conjugacy classes, characters, representations, and tensor products for these groups (with a finite number) when algebraic relations are given, thereby enabling readers to apply this to other groups of interest.


Symmetries and Conservation Laws in Particle Physics

Symmetries and Conservation Laws in Particle Physics

Author: Stephen Haywood

Publisher: World Scientific

Published: 2011

Total Pages: 167

ISBN-13: 1848166591

DOWNLOAD EBOOK

This book will explain how group theory underpins some of the key features of particle physics. It will examine symmetries and conservation laws in quantum mechanics and relate these to groups of transformations. Group theory provides the language for describing how particles (and in particular, their quantum numbers) combine. This provides understanding of hadronic physics as well as physics beyond the Standard Model. The symmetries of the Standard Model associated with the Electroweak and Strong (QCD) forces are described by the groups U(1), SU(2) and SU(3). The properties of these groups are examined and the relevance to particle physics is discussed.Stephen Haywood, author of Symmetries And Conservation Laws In Particle Physics, explains how his book can help experimental physicists and PhD students understand group theory and particle physics in our new video View the interview at http: //www.youtube.com/watch'v=jbQk78TBLS


Book Synopsis Symmetries and Conservation Laws in Particle Physics by : Stephen Haywood

Download or read book Symmetries and Conservation Laws in Particle Physics written by Stephen Haywood and published by World Scientific. This book was released on 2011 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book will explain how group theory underpins some of the key features of particle physics. It will examine symmetries and conservation laws in quantum mechanics and relate these to groups of transformations. Group theory provides the language for describing how particles (and in particular, their quantum numbers) combine. This provides understanding of hadronic physics as well as physics beyond the Standard Model. The symmetries of the Standard Model associated with the Electroweak and Strong (QCD) forces are described by the groups U(1), SU(2) and SU(3). The properties of these groups are examined and the relevance to particle physics is discussed.Stephen Haywood, author of Symmetries And Conservation Laws In Particle Physics, explains how his book can help experimental physicists and PhD students understand group theory and particle physics in our new video View the interview at http: //www.youtube.com/watch'v=jbQk78TBLS


Symmetry and the Standard Model

Symmetry and the Standard Model

Author: Matthew Robinson

Publisher: Springer Science & Business Media

Published: 2011-08-17

Total Pages: 343

ISBN-13: 1441982671

DOWNLOAD EBOOK

While theoretical particle physics is an extraordinarily fascinating field, the incredibly fast pace at which it moves along, combined with the huge amount of background information necessary to perform cutting edge research, poses a formidable challenge for graduate students. This book represents the first in a series designed to assist students in the process of transitioning from coursework to research in particle physics. Rather than reading literally dozens of physics and mathematics texts, trying to assimilate the countless ideas, translate notations and perspectives, and see how it all fits together to get a holistic understanding, this series provides a detailed overview of the major mathematical and physical ideas in theoretical particle physics. Ultimately the ideas will be presented in a unified, consistent, holistic picture, where each topic is built firmly on what has come before, and all topics are related in a clear and intuitive way. This introductory text on quantum field theory and particle physics provides both a self-contained and complete introduction to not only the necessary physical ideas, but also a complete introduction to the necessary mathematical tools. Assuming minimal knowledge of undergraduate physics and mathematics, this book lays both the mathematical and physical groundwork with clear, intuitive explanations and plenty of examples. The book then continues with an exposition of the Standard Model of Particle Physics, the theory that currently seems to explain the universe apart from gravity. Furthermore, this book was written as a primer for the more advanced mathematical and physical ideas to come later in this series.


Book Synopsis Symmetry and the Standard Model by : Matthew Robinson

Download or read book Symmetry and the Standard Model written by Matthew Robinson and published by Springer Science & Business Media. This book was released on 2011-08-17 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: While theoretical particle physics is an extraordinarily fascinating field, the incredibly fast pace at which it moves along, combined with the huge amount of background information necessary to perform cutting edge research, poses a formidable challenge for graduate students. This book represents the first in a series designed to assist students in the process of transitioning from coursework to research in particle physics. Rather than reading literally dozens of physics and mathematics texts, trying to assimilate the countless ideas, translate notations and perspectives, and see how it all fits together to get a holistic understanding, this series provides a detailed overview of the major mathematical and physical ideas in theoretical particle physics. Ultimately the ideas will be presented in a unified, consistent, holistic picture, where each topic is built firmly on what has come before, and all topics are related in a clear and intuitive way. This introductory text on quantum field theory and particle physics provides both a self-contained and complete introduction to not only the necessary physical ideas, but also a complete introduction to the necessary mathematical tools. Assuming minimal knowledge of undergraduate physics and mathematics, this book lays both the mathematical and physical groundwork with clear, intuitive explanations and plenty of examples. The book then continues with an exposition of the Standard Model of Particle Physics, the theory that currently seems to explain the universe apart from gravity. Furthermore, this book was written as a primer for the more advanced mathematical and physical ideas to come later in this series.


Symmetries in Particle Physics

Symmetries in Particle Physics

Author: Itzhak Bars

Publisher: Springer Science & Business Media

Published: 2013-11-21

Total Pages: 306

ISBN-13: 1489953132

DOWNLOAD EBOOK


Book Synopsis Symmetries in Particle Physics by : Itzhak Bars

Download or read book Symmetries in Particle Physics written by Itzhak Bars and published by Springer Science & Business Media. This book was released on 2013-11-21 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Symmetry Principles Particle Physics

Symmetry Principles Particle Physics

Author: W. M. Gibson

Publisher: Cambridge University Press

Published: 1976-03-11

Total Pages: 404

ISBN-13: 9780521207874

DOWNLOAD EBOOK

An understanding of the properties and interactions of the elementary particles is an essential prerequisite of research work in high energy physics. Much progress in the subject has been achieved with the aid of symmetry principles. In this 1980 book the concept of symmetry or invariance is employed as a unifying theme. Using a careful explanation of the mathematical formalism and with many applications to particular cases, the authors introduce the reader to the symmetry schemes which dominate the world of the particle physicist. The presentation will also appeal to mathematicians and physicists in other fields who are interested in the applications of the general principles of symmetry. After a brief survey of the particles and a review of the relevant quantum mechanics, the principal symmetries are studied in turn. Some technical points are relegated to appendices and the book contains extensive references.


Book Synopsis Symmetry Principles Particle Physics by : W. M. Gibson

Download or read book Symmetry Principles Particle Physics written by W. M. Gibson and published by Cambridge University Press. This book was released on 1976-03-11 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: An understanding of the properties and interactions of the elementary particles is an essential prerequisite of research work in high energy physics. Much progress in the subject has been achieved with the aid of symmetry principles. In this 1980 book the concept of symmetry or invariance is employed as a unifying theme. Using a careful explanation of the mathematical formalism and with many applications to particular cases, the authors introduce the reader to the symmetry schemes which dominate the world of the particle physicist. The presentation will also appeal to mathematicians and physicists in other fields who are interested in the applications of the general principles of symmetry. After a brief survey of the particles and a review of the relevant quantum mechanics, the principal symmetries are studied in turn. Some technical points are relegated to appendices and the book contains extensive references.


Symmetries, Asymmetries, and the World of Particles

Symmetries, Asymmetries, and the World of Particles

Author: T. D. Lee

Publisher: University of Washington Press

Published: 1988

Total Pages: 86

ISBN-13: 9780295965192

DOWNLOAD EBOOK

Discusses mirror symmetry, a symmetries, time reversal, vacuum as a physical medium, spontaneous symmetry breaking, particles, and quarks.


Book Synopsis Symmetries, Asymmetries, and the World of Particles by : T. D. Lee

Download or read book Symmetries, Asymmetries, and the World of Particles written by T. D. Lee and published by University of Washington Press. This book was released on 1988 with total page 86 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discusses mirror symmetry, a symmetries, time reversal, vacuum as a physical medium, spontaneous symmetry breaking, particles, and quarks.


Physics from Symmetry

Physics from Symmetry

Author: Jakob Schwichtenberg

Publisher: Springer

Published: 2017-12-01

Total Pages: 287

ISBN-13: 3319666312

DOWNLOAD EBOOK

This is a textbook that derives the fundamental theories of physics from symmetry. It starts by introducing, in a completely self-contained way, all mathematical tools needed to use symmetry ideas in physics. Thereafter, these tools are put into action and by using symmetry constraints, the fundamental equations of Quantum Mechanics, Quantum Field Theory, Electromagnetism, and Classical Mechanics are derived. As a result, the reader is able to understand the basic assumptions behind, and the connections between the modern theories of physics. The book concludes with first applications of the previously derived equations. Thanks to the input of readers from around the world, this second edition has been purged of typographical errors and also contains several revised sections with improved explanations.


Book Synopsis Physics from Symmetry by : Jakob Schwichtenberg

Download or read book Physics from Symmetry written by Jakob Schwichtenberg and published by Springer. This book was released on 2017-12-01 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a textbook that derives the fundamental theories of physics from symmetry. It starts by introducing, in a completely self-contained way, all mathematical tools needed to use symmetry ideas in physics. Thereafter, these tools are put into action and by using symmetry constraints, the fundamental equations of Quantum Mechanics, Quantum Field Theory, Electromagnetism, and Classical Mechanics are derived. As a result, the reader is able to understand the basic assumptions behind, and the connections between the modern theories of physics. The book concludes with first applications of the previously derived equations. Thanks to the input of readers from around the world, this second edition has been purged of typographical errors and also contains several revised sections with improved explanations.


Elementary-Particle Physics

Elementary-Particle Physics

Author: National Research Council

Publisher: National Academies Press

Published: 1998-04-01

Total Pages: 211

ISBN-13: 0309174163

DOWNLOAD EBOOK

Part of the Physics in a New Era series of assessments of the various branches of the field, Elementary-Particle Physics reviews progress in the field over the past 10 years and recommends actions needed to address the key questions that remain unanswered. It explains in simple terms the present picture of how matter is constructed. As physicists have probed ever deeper into the structure of matter, they have begun to explore one of the most fundamental questions that one can ask about the universe: What gives matter its mass? A new international accelerator to be built at the European laboratory CERN will begin to explore some of the mechanisms proposed to give matter its heft. The committee recommends full U.S. participation in this project as well as various other experiments and studies to be carried out now and in the longer term.


Book Synopsis Elementary-Particle Physics by : National Research Council

Download or read book Elementary-Particle Physics written by National Research Council and published by National Academies Press. This book was released on 1998-04-01 with total page 211 pages. Available in PDF, EPUB and Kindle. Book excerpt: Part of the Physics in a New Era series of assessments of the various branches of the field, Elementary-Particle Physics reviews progress in the field over the past 10 years and recommends actions needed to address the key questions that remain unanswered. It explains in simple terms the present picture of how matter is constructed. As physicists have probed ever deeper into the structure of matter, they have begun to explore one of the most fundamental questions that one can ask about the universe: What gives matter its mass? A new international accelerator to be built at the European laboratory CERN will begin to explore some of the mechanisms proposed to give matter its heft. The committee recommends full U.S. participation in this project as well as various other experiments and studies to be carried out now and in the longer term.


Symmetries in Fundamental Physics

Symmetries in Fundamental Physics

Author: Kurt Sundermeyer

Publisher: Springer

Published: 2014-07-23

Total Pages: 806

ISBN-13: 3319065815

DOWNLOAD EBOOK

Over the course of the last century it has become clear that both elementary particle physics and relativity theories are based on the notion of symmetries. These symmetries become manifest in that the "laws of nature" are invariant under spacetime transformations and/or gauge transformations. The consequences of these symmetries were analyzed as early as in 1918 by Emmy Noether on the level of action functionals. Her work did not receive due recognition for nearly half a century, but can today be understood as a recurring theme in classical mechanics, electrodynamics and special relativity, Yang-Mills type quantum field theories, and in general relativity. As a matter of fact, as shown in this monograph, many aspects of physics can be derived solely from symmetry considerations. This substantiates the statement of E.P. Wigner "... if we knew all the laws of nature, or the ultimate Law of nature, the invariance properties of these laws would not furnish us new information." Thanks to Wigner we now also understand the implications of quantum physics and symmetry considerations: Poincare invariance dictates both the characteristic properties of particles (mass, spin, ...) and the wave equations of spin 0, 1/2, 1, ... objects. Further, the work of C.N. Yang and R. Mills reveals the consequences of internal symmetries as exemplified in the symmetry group of elementary particle physics. Given this pivotal role of symmetries it is thus not surprising that current research in fundamental physics is to a great degree motivated and inspired by considerations of symmetry. The treatment of symmetries in this monograph ranges from classical physics to now well-established theories of fundamental interactions, to the latest research on unified theories and quantum gravity.


Book Synopsis Symmetries in Fundamental Physics by : Kurt Sundermeyer

Download or read book Symmetries in Fundamental Physics written by Kurt Sundermeyer and published by Springer. This book was released on 2014-07-23 with total page 806 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the course of the last century it has become clear that both elementary particle physics and relativity theories are based on the notion of symmetries. These symmetries become manifest in that the "laws of nature" are invariant under spacetime transformations and/or gauge transformations. The consequences of these symmetries were analyzed as early as in 1918 by Emmy Noether on the level of action functionals. Her work did not receive due recognition for nearly half a century, but can today be understood as a recurring theme in classical mechanics, electrodynamics and special relativity, Yang-Mills type quantum field theories, and in general relativity. As a matter of fact, as shown in this monograph, many aspects of physics can be derived solely from symmetry considerations. This substantiates the statement of E.P. Wigner "... if we knew all the laws of nature, or the ultimate Law of nature, the invariance properties of these laws would not furnish us new information." Thanks to Wigner we now also understand the implications of quantum physics and symmetry considerations: Poincare invariance dictates both the characteristic properties of particles (mass, spin, ...) and the wave equations of spin 0, 1/2, 1, ... objects. Further, the work of C.N. Yang and R. Mills reveals the consequences of internal symmetries as exemplified in the symmetry group of elementary particle physics. Given this pivotal role of symmetries it is thus not surprising that current research in fundamental physics is to a great degree motivated and inspired by considerations of symmetry. The treatment of symmetries in this monograph ranges from classical physics to now well-established theories of fundamental interactions, to the latest research on unified theories and quantum gravity.