Dynamic Patterns

Dynamic Patterns

Author: J. A. Scott Kelso

Publisher: MIT Press

Published: 1995

Total Pages: 368

ISBN-13: 9780262611312

DOWNLOAD EBOOK

foreword by Hermann Haken For the past twenty years Scott Kelso's research has focused on extending the physical concepts of self- organization and the mathematical tools of nonlinear dynamics to understand how human beings (and human brains) perceive, intend, learn, control, and coordinate complex behaviors. In this book Kelso proposes a new, general framework within which to connect brain, mind, and behavior.Kelso's prescription for mental life breaks dramatically with the classical computational approach that is still the operative framework for many newer psychological and neurophysiological studies. His core thesis is that the creation and evolution of patterned behavior at all levels--from neurons to mind--is governed by the generic processes of self-organization. Both human brain and behavior are shown to exhibit features of pattern-forming dynamical systems, including multistability, abrupt phase transitions, crises, and intermittency. Dynamic Patterns brings together different aspects of this approach to the study of human behavior, using simple experimental examples and illustrations to convey essential concepts, strategies, and methods, with a minimum of mathematics. Kelso begins with a general account of dynamic pattern formation. He then takes up behavior, focusing initially on identifying pattern-forming instabilities in human sensorimotor coordination. Moving back and forth between theory and experiment, he establishes the notion that the same pattern-forming mechanisms apply regardless of the component parts involved (parts of the body, parts of the nervous system, parts of society) and the medium through which the parts are coupled. Finally, employing the latest techniques to observe spatiotemporal patterns of brain activity, Kelso shows that the human brain is fundamentally a pattern forming dynamical system, poised on the brink of instability. Self-organization thus underlies the cooperative action of neurons that produces human behavior in all its forms.


Book Synopsis Dynamic Patterns by : J. A. Scott Kelso

Download or read book Dynamic Patterns written by J. A. Scott Kelso and published by MIT Press. This book was released on 1995 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: foreword by Hermann Haken For the past twenty years Scott Kelso's research has focused on extending the physical concepts of self- organization and the mathematical tools of nonlinear dynamics to understand how human beings (and human brains) perceive, intend, learn, control, and coordinate complex behaviors. In this book Kelso proposes a new, general framework within which to connect brain, mind, and behavior.Kelso's prescription for mental life breaks dramatically with the classical computational approach that is still the operative framework for many newer psychological and neurophysiological studies. His core thesis is that the creation and evolution of patterned behavior at all levels--from neurons to mind--is governed by the generic processes of self-organization. Both human brain and behavior are shown to exhibit features of pattern-forming dynamical systems, including multistability, abrupt phase transitions, crises, and intermittency. Dynamic Patterns brings together different aspects of this approach to the study of human behavior, using simple experimental examples and illustrations to convey essential concepts, strategies, and methods, with a minimum of mathematics. Kelso begins with a general account of dynamic pattern formation. He then takes up behavior, focusing initially on identifying pattern-forming instabilities in human sensorimotor coordination. Moving back and forth between theory and experiment, he establishes the notion that the same pattern-forming mechanisms apply regardless of the component parts involved (parts of the body, parts of the nervous system, parts of society) and the medium through which the parts are coupled. Finally, employing the latest techniques to observe spatiotemporal patterns of brain activity, Kelso shows that the human brain is fundamentally a pattern forming dynamical system, poised on the brink of instability. Self-organization thus underlies the cooperative action of neurons that produces human behavior in all its forms.


Pattern Formation and Dynamics in Nonequilibrium Systems

Pattern Formation and Dynamics in Nonequilibrium Systems

Author: Michael Cross

Publisher: Cambridge University Press

Published: 2009-07-16

Total Pages: 547

ISBN-13: 0521770505

DOWNLOAD EBOOK

An account of how complex patterns form in sustained nonequilibrium systems; for graduate students in biology, chemistry, engineering, mathematics, and physics.


Book Synopsis Pattern Formation and Dynamics in Nonequilibrium Systems by : Michael Cross

Download or read book Pattern Formation and Dynamics in Nonequilibrium Systems written by Michael Cross and published by Cambridge University Press. This book was released on 2009-07-16 with total page 547 pages. Available in PDF, EPUB and Kindle. Book excerpt: An account of how complex patterns form in sustained nonequilibrium systems; for graduate students in biology, chemistry, engineering, mathematics, and physics.


The Dynamics Of Pattern

The Dynamics Of Pattern

Author: Alexander B Ezersky

Publisher: World Scientific

Published: 2000-10-31

Total Pages: 338

ISBN-13: 9814494356

DOWNLOAD EBOOK

Spirals, vortices, crystalline lattices, and other attractive patterns are prevalent in Nature. How do such beautiful patterns appear from the initial chaos? What universal dynamical rules are responsible for their formation? What is the dynamical origin of spatial disorder in nonequilibrium media? Based on the many visual experiments in physics, hydrodynamics, chemistry, and biology, this invaluable book answers those and related intriguing questions. The mathematical models presented for the dynamical theory of pattern formation are nonlinear partial differential equations. The corresponding theory is not so accessible to a wide audience. Consequently, the authors have made every attempt to synthesize long and complex mathematical calculations to exhibit the underlying physics. The book will be useful for final year undergraduates, but is primarily aimed at graduate students, postdoctoral fellows, and others interested in the puzzling phenomena of pattern formation.


Book Synopsis The Dynamics Of Pattern by : Alexander B Ezersky

Download or read book The Dynamics Of Pattern written by Alexander B Ezersky and published by World Scientific. This book was released on 2000-10-31 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spirals, vortices, crystalline lattices, and other attractive patterns are prevalent in Nature. How do such beautiful patterns appear from the initial chaos? What universal dynamical rules are responsible for their formation? What is the dynamical origin of spatial disorder in nonequilibrium media? Based on the many visual experiments in physics, hydrodynamics, chemistry, and biology, this invaluable book answers those and related intriguing questions. The mathematical models presented for the dynamical theory of pattern formation are nonlinear partial differential equations. The corresponding theory is not so accessible to a wide audience. Consequently, the authors have made every attempt to synthesize long and complex mathematical calculations to exhibit the underlying physics. The book will be useful for final year undergraduates, but is primarily aimed at graduate students, postdoctoral fellows, and others interested in the puzzling phenomena of pattern formation.


The Dynamics of Patterns

The Dynamics of Patterns

Author: M. I. Rabinovich

Publisher: World Scientific

Published: 2000

Total Pages: 340

ISBN-13: 9789810240561

DOWNLOAD EBOOK

"This beautifully illustrated book brings together a remarkable array of pattern-forming phenomena The authors have assembled an impressive collection of striking photographs and computer-generated images, and the book would be worth buying for this alone the Appendix describing key experiments is a highlight. Here the authors outline the historical development of experiments in parametrically-excited patterns, thermal convection and diffusive chemical reactions." UK Nonlinear News, 2002


Book Synopsis The Dynamics of Patterns by : M. I. Rabinovich

Download or read book The Dynamics of Patterns written by M. I. Rabinovich and published by World Scientific. This book was released on 2000 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This beautifully illustrated book brings together a remarkable array of pattern-forming phenomena The authors have assembled an impressive collection of striking photographs and computer-generated images, and the book would be worth buying for this alone the Appendix describing key experiments is a highlight. Here the authors outline the historical development of experiments in parametrically-excited patterns, thermal convection and diffusive chemical reactions." UK Nonlinear News, 2002


Patterns and Interfaces in Dissipative Dynamics

Patterns and Interfaces in Dissipative Dynamics

Author: L.M. Pismen

Publisher: Springer Science & Business Media

Published: 2006-07-07

Total Pages: 383

ISBN-13: 3540304312

DOWNLOAD EBOOK

Spontaneous pattern formation in nonlinear dissipative systems far from equilibrium occurs in a variety of settings in nature and technology, and has applications ranging from nonlinear optics through solid and fluid mechanics, physical chemistry and chemical engineering to biology. This book explores the forefront of current research, describing in-depth the analytical methods that elucidate the complex evolution of nonlinear dissipative systems.


Book Synopsis Patterns and Interfaces in Dissipative Dynamics by : L.M. Pismen

Download or read book Patterns and Interfaces in Dissipative Dynamics written by L.M. Pismen and published by Springer Science & Business Media. This book was released on 2006-07-07 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spontaneous pattern formation in nonlinear dissipative systems far from equilibrium occurs in a variety of settings in nature and technology, and has applications ranging from nonlinear optics through solid and fluid mechanics, physical chemistry and chemical engineering to biology. This book explores the forefront of current research, describing in-depth the analytical methods that elucidate the complex evolution of nonlinear dissipative systems.


Nonlinear Dynamics

Nonlinear Dynamics

Author: Muthusamy Lakshmanan

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 628

ISBN-13: 3642556884

DOWNLOAD EBOOK

This self-contained treatment covers all aspects of nonlinear dynamics, from fundamentals to recent developments, in a unified and comprehensive way. Numerous examples and exercises will help the student to assimilate and apply the techniques presented.


Book Synopsis Nonlinear Dynamics by : Muthusamy Lakshmanan

Download or read book Nonlinear Dynamics written by Muthusamy Lakshmanan and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 628 pages. Available in PDF, EPUB and Kindle. Book excerpt: This self-contained treatment covers all aspects of nonlinear dynamics, from fundamentals to recent developments, in a unified and comprehensive way. Numerous examples and exercises will help the student to assimilate and apply the techniques presented.


Advances in Dynamics, Patterns, Cognition

Advances in Dynamics, Patterns, Cognition

Author: Igor S. Aranson

Publisher: Springer

Published: 2017-05-02

Total Pages: 336

ISBN-13: 3319536737

DOWNLOAD EBOOK

This book focuses on recent progress in complexity research based on the fundamental nonlinear dynamical and statistical theory of oscillations, waves, chaos, and structures far from equilibrium. Celebrating seminal contributions to the field by Prof. M. I. Rabinovich of the University of California at San Diego, this volume brings together perspectives on both the fundamental aspects of complexity studies, as well as in applications in different fields ranging from granular patterns to understanding of the cognitive brain and mind dynamics. The slate of world-class authors review recent achievements that together present a broad and coherent coverage of modern research in complexity greater than the sum of its parts.


Book Synopsis Advances in Dynamics, Patterns, Cognition by : Igor S. Aranson

Download or read book Advances in Dynamics, Patterns, Cognition written by Igor S. Aranson and published by Springer. This book was released on 2017-05-02 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on recent progress in complexity research based on the fundamental nonlinear dynamical and statistical theory of oscillations, waves, chaos, and structures far from equilibrium. Celebrating seminal contributions to the field by Prof. M. I. Rabinovich of the University of California at San Diego, this volume brings together perspectives on both the fundamental aspects of complexity studies, as well as in applications in different fields ranging from granular patterns to understanding of the cognitive brain and mind dynamics. The slate of world-class authors review recent achievements that together present a broad and coherent coverage of modern research in complexity greater than the sum of its parts.


Dynamics and Patterns in Complex Fluids

Dynamics and Patterns in Complex Fluids

Author: Akira Onuki

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 231

ISBN-13: 3642760082

DOWNLOAD EBOOK

The fourth Nishinomiya-Yukawa Memorial Symposium, devoted to the topic of dynamics and patterns in complex fluids, was held on October 26 and 27, 1989, in Nishinomiya City, Japan, where ten invited speakers gave their lectures. A one-day meeting, comprising short talks and poster sessions, was then held on the same topic on October 28 at the Research Institute for Fundamental Physics, Kyoto University. The present volume contains the 10 invited papers and 38 contributed papers presented at these two meetings. The symposium was sponsored by Nishinomiya City, where Prof. Hideki Yukawa once lived and where he wrote the celebrated paper describing the work that was later honored by a Nobel prize. The topic of the fourth symposium was chosen from one of the most vigorously evolving and highly interdisciplinary fields in condensed matter physics. The field of complex fluids is very diverse and still in its infancy and, as a result, the definition of a complex fluid varies greatly from one researcher to the next. One of the objectives of the symposium was to clarify its definition by explicitly posing a number of potentially rich problems waiting to be explored. Indeed, experimentalists are disclosing a variety of intriguing dynamical phenomena in complex systems such as polymers, liquid crystals, gels, colloids, and surfactant systems. We, the organizers, hope that the symposium will contribute to the increasing importance of the field in the coming years.


Book Synopsis Dynamics and Patterns in Complex Fluids by : Akira Onuki

Download or read book Dynamics and Patterns in Complex Fluids written by Akira Onuki and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fourth Nishinomiya-Yukawa Memorial Symposium, devoted to the topic of dynamics and patterns in complex fluids, was held on October 26 and 27, 1989, in Nishinomiya City, Japan, where ten invited speakers gave their lectures. A one-day meeting, comprising short talks and poster sessions, was then held on the same topic on October 28 at the Research Institute for Fundamental Physics, Kyoto University. The present volume contains the 10 invited papers and 38 contributed papers presented at these two meetings. The symposium was sponsored by Nishinomiya City, where Prof. Hideki Yukawa once lived and where he wrote the celebrated paper describing the work that was later honored by a Nobel prize. The topic of the fourth symposium was chosen from one of the most vigorously evolving and highly interdisciplinary fields in condensed matter physics. The field of complex fluids is very diverse and still in its infancy and, as a result, the definition of a complex fluid varies greatly from one researcher to the next. One of the objectives of the symposium was to clarify its definition by explicitly posing a number of potentially rich problems waiting to be explored. Indeed, experimentalists are disclosing a variety of intriguing dynamical phenomena in complex systems such as polymers, liquid crystals, gels, colloids, and surfactant systems. We, the organizers, hope that the symposium will contribute to the increasing importance of the field in the coming years.


Nonlinear Dynamics and Pattern Formation in the Natural Environment

Nonlinear Dynamics and Pattern Formation in the Natural Environment

Author: A. Van Harten

Publisher: Taylor & Francis

Published: 2022-09-16

Total Pages: 344

ISBN-13: 1351428276

DOWNLOAD EBOOK

This Research Note aims to provide an insight into recent developments in the theory of pattern formation. In the last decade there has been considerable progress in this field, both from a theoretical and a practical point of view. Recent mathematical developments concern the study of the nonlinear stability of systems at near-critical conditions by an appropriate system of modulation equations. The complexity of the original problem can be reduced drastically by this approximation. Moreover, it provides unifying point of view for a wide range of problems. New applications of the theory arise in a multitude of scientific areas such as hydrodynamics, reaction-diffusion problems, oceanography, meteorology, combustion, geophysical and biological morphodynamics and semi-conductors.This book is intended to show the interactions between the mathematical theory of nonlinear dynamics and the study of pattern generating phenomena in the natural environment. There is an intimate relationship between new insights in the mathematical aspects of nonlinear pattern formation and the comprehension of such phenomena. Therefore there are two partly overlapping main themes: one in which the emphasis is on generally applicable mathematical theories and techniques and one in which the phenomenology of pattern evolution in various areas is discussed.The book comprises 19 contributions by experts in the field. Although the emphasis changes considerably from paper to paper, in each contribution the same two themes are present; all the authors have aimed to achieve a suitable balance between the mathematical theory and the physical phenomena.


Book Synopsis Nonlinear Dynamics and Pattern Formation in the Natural Environment by : A. Van Harten

Download or read book Nonlinear Dynamics and Pattern Formation in the Natural Environment written by A. Van Harten and published by Taylor & Francis. This book was released on 2022-09-16 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Research Note aims to provide an insight into recent developments in the theory of pattern formation. In the last decade there has been considerable progress in this field, both from a theoretical and a practical point of view. Recent mathematical developments concern the study of the nonlinear stability of systems at near-critical conditions by an appropriate system of modulation equations. The complexity of the original problem can be reduced drastically by this approximation. Moreover, it provides unifying point of view for a wide range of problems. New applications of the theory arise in a multitude of scientific areas such as hydrodynamics, reaction-diffusion problems, oceanography, meteorology, combustion, geophysical and biological morphodynamics and semi-conductors.This book is intended to show the interactions between the mathematical theory of nonlinear dynamics and the study of pattern generating phenomena in the natural environment. There is an intimate relationship between new insights in the mathematical aspects of nonlinear pattern formation and the comprehension of such phenomena. Therefore there are two partly overlapping main themes: one in which the emphasis is on generally applicable mathematical theories and techniques and one in which the phenomenology of pattern evolution in various areas is discussed.The book comprises 19 contributions by experts in the field. Although the emphasis changes considerably from paper to paper, in each contribution the same two themes are present; all the authors have aimed to achieve a suitable balance between the mathematical theory and the physical phenomena.


Spatial Dynamics and Pattern Formation in Biological Populations

Spatial Dynamics and Pattern Formation in Biological Populations

Author: Ranjit Kumar Upadhyay

Publisher: Chapman & Hall/CRC

Published: 2021

Total Pages: 0

ISBN-13: 9781000334241

DOWNLOAD EBOOK

The book provides an introduction to deterministic (and some stochastic) modeling of spatiotemporal phenomena in ecology, epidemiology, and neural systems. A survey of the classical models in the fields with up to date applications is given. The book begins with detailed description of how spatial dynamics/diffusive processes influence the dynamics of biological populations. These processes play a key role in understanding the outbreak and spread of pandemics which help us in designing the control strategies from the public health perspective. A brief discussion on the functional mechanism of the brain (single neuron models and network level) with classical models of neuronal dynamics in space and time is given. Relevant phenomena and existing modeling approaches in ecology, epidemiology and neuroscience are introduced, which provide examples of pattern formation in these models. The analysis of patterns enables us to study the dynamics of macroscopic and microscopic behaviour of underlying systems and travelling wave type patterns observed in dispersive systems. Moving on to virus dynamics, authors present a detailed analysis of different types models of infectious diseases including two models for influenza, five models for Ebola virus and seven models for Zika virus with diffusion and time delay. A Chapter is devoted for the study of Brain Dynamics (Neural systems in space and time). Significant advances made in modeling the reaction-diffusion systems are presented and spatiotemporal patterning in the systems is reviewed. Development of appropriate mathematical models and detailed analysis (such as linear stability, weakly nonlinear analysis, bifurcation analysis, control theory, numerical simulation) are presented. Key Features Covers the fundamental concepts and mathematical skills required to analyse reaction-diffusion models for biological populations. Concepts are introduced in such a way that readers with a basic knowledge of differential equations and numerical methods can understand the analysis. The results are also illustrated with figures. Focuses on mathematical modeling and numerical simulations using basic conceptual and classic models of population dynamics, Virus and Brain dynamics. Covers wide range of models using spatial and non-spatial approaches. Covers single, two and multispecies reaction-diffusion models from ecology and models from bio-chemistry. Models are analysed for stability of equilibrium points, Turing instability, Hopf bifurcation and pattern formations. Uses Mathematica for problem solving and MATLAB for pattern formations. Contains solved Examples and Problems in Exercises. The Book is suitable for advanced undergraduate, graduate and research students. For those who are working in the above areas, it provides information from most of the recent works. The text presents all the fundamental concepts and mathematical skills needed to build models and perform analyses.


Book Synopsis Spatial Dynamics and Pattern Formation in Biological Populations by : Ranjit Kumar Upadhyay

Download or read book Spatial Dynamics and Pattern Formation in Biological Populations written by Ranjit Kumar Upadhyay and published by Chapman & Hall/CRC. This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides an introduction to deterministic (and some stochastic) modeling of spatiotemporal phenomena in ecology, epidemiology, and neural systems. A survey of the classical models in the fields with up to date applications is given. The book begins with detailed description of how spatial dynamics/diffusive processes influence the dynamics of biological populations. These processes play a key role in understanding the outbreak and spread of pandemics which help us in designing the control strategies from the public health perspective. A brief discussion on the functional mechanism of the brain (single neuron models and network level) with classical models of neuronal dynamics in space and time is given. Relevant phenomena and existing modeling approaches in ecology, epidemiology and neuroscience are introduced, which provide examples of pattern formation in these models. The analysis of patterns enables us to study the dynamics of macroscopic and microscopic behaviour of underlying systems and travelling wave type patterns observed in dispersive systems. Moving on to virus dynamics, authors present a detailed analysis of different types models of infectious diseases including two models for influenza, five models for Ebola virus and seven models for Zika virus with diffusion and time delay. A Chapter is devoted for the study of Brain Dynamics (Neural systems in space and time). Significant advances made in modeling the reaction-diffusion systems are presented and spatiotemporal patterning in the systems is reviewed. Development of appropriate mathematical models and detailed analysis (such as linear stability, weakly nonlinear analysis, bifurcation analysis, control theory, numerical simulation) are presented. Key Features Covers the fundamental concepts and mathematical skills required to analyse reaction-diffusion models for biological populations. Concepts are introduced in such a way that readers with a basic knowledge of differential equations and numerical methods can understand the analysis. The results are also illustrated with figures. Focuses on mathematical modeling and numerical simulations using basic conceptual and classic models of population dynamics, Virus and Brain dynamics. Covers wide range of models using spatial and non-spatial approaches. Covers single, two and multispecies reaction-diffusion models from ecology and models from bio-chemistry. Models are analysed for stability of equilibrium points, Turing instability, Hopf bifurcation and pattern formations. Uses Mathematica for problem solving and MATLAB for pattern formations. Contains solved Examples and Problems in Exercises. The Book is suitable for advanced undergraduate, graduate and research students. For those who are working in the above areas, it provides information from most of the recent works. The text presents all the fundamental concepts and mathematical skills needed to build models and perform analyses.