The FitzHugh-Nagumo Model

The FitzHugh-Nagumo Model

Author: C. Rocsoreanu

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 245

ISBN-13: 9401595488

DOWNLOAD EBOOK

The present monograph analyses the FitzHugh-Nagumo (F-N) model Le. , the Cauchy problem for some generalized Van der Pol equation depending on three real parameters a, band c. This model, given in (1. 1. 17), governs the initiation of the cardiac impulse. The presence of the three parameters leads to a large variety of dy namics, each of them responsible for a specific functioning of the heart. For physiologists it is highly desirable to have aglobai view of all possible qualitatively distinct responses of the F-N model for all values of the pa rameters. This reduces to the knowledge of the global bifurcation diagram. So far, only a few partial results appeared and they were spread through out the literature. Our work provides a more or less complete theoretical and numerical investigation of the complex phase dynamics and bifurca tions associated with the F-N dynamical system. This study includes the static and dynamic bifurcations generated by the variation of a, band c and the corresponding oscillations, of special interest for applications. It enables one to predict all possible types of initiations of heart beats and the mechanism of transformation of some types of oscillations into others by following the dynamics along transient phase space trajectories. Of course, all these results hold for the F-N model. The global phase space picture enables one to determine the domain of validity of this model.


Book Synopsis The FitzHugh-Nagumo Model by : C. Rocsoreanu

Download or read book The FitzHugh-Nagumo Model written by C. Rocsoreanu and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present monograph analyses the FitzHugh-Nagumo (F-N) model Le. , the Cauchy problem for some generalized Van der Pol equation depending on three real parameters a, band c. This model, given in (1. 1. 17), governs the initiation of the cardiac impulse. The presence of the three parameters leads to a large variety of dy namics, each of them responsible for a specific functioning of the heart. For physiologists it is highly desirable to have aglobai view of all possible qualitatively distinct responses of the F-N model for all values of the pa rameters. This reduces to the knowledge of the global bifurcation diagram. So far, only a few partial results appeared and they were spread through out the literature. Our work provides a more or less complete theoretical and numerical investigation of the complex phase dynamics and bifurca tions associated with the F-N dynamical system. This study includes the static and dynamic bifurcations generated by the variation of a, band c and the corresponding oscillations, of special interest for applications. It enables one to predict all possible types of initiations of heart beats and the mechanism of transformation of some types of oscillations into others by following the dynamics along transient phase space trajectories. Of course, all these results hold for the F-N model. The global phase space picture enables one to determine the domain of validity of this model.


Encyclopedia of Computational Neuroscience

Encyclopedia of Computational Neuroscience

Author: Dieter Jaeger

Publisher:

Published:

Total Pages:

ISBN-13: 9781461473206

DOWNLOAD EBOOK


Book Synopsis Encyclopedia of Computational Neuroscience by : Dieter Jaeger

Download or read book Encyclopedia of Computational Neuroscience written by Dieter Jaeger and published by . This book was released on with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:


Dynamical Systems in Neuroscience

Dynamical Systems in Neuroscience

Author: Eugene M. Izhikevich

Publisher: MIT Press

Published: 2010-01-22

Total Pages: 459

ISBN-13: 0262514206

DOWNLOAD EBOOK

Explains the relationship of electrophysiology, nonlinear dynamics, and the computational properties of neurons, with each concept presented in terms of both neuroscience and mathematics and illustrated using geometrical intuition. In order to model neuronal behavior or to interpret the results of modeling studies, neuroscientists must call upon methods of nonlinear dynamics. This book offers an introduction to nonlinear dynamical systems theory for researchers and graduate students in neuroscience. It also provides an overview of neuroscience for mathematicians who want to learn the basic facts of electrophysiology. Dynamical Systems in Neuroscience presents a systematic study of the relationship of electrophysiology, nonlinear dynamics, and computational properties of neurons. It emphasizes that information processing in the brain depends not only on the electrophysiological properties of neurons but also on their dynamical properties. The book introduces dynamical systems, starting with one- and two-dimensional Hodgkin-Huxley-type models and continuing to a description of bursting systems. Each chapter proceeds from the simple to the complex, and provides sample problems at the end. The book explains all necessary mathematical concepts using geometrical intuition; it includes many figures and few equations, making it especially suitable for non-mathematicians. Each concept is presented in terms of both neuroscience and mathematics, providing a link between the two disciplines. Nonlinear dynamical systems theory is at the core of computational neuroscience research, but it is not a standard part of the graduate neuroscience curriculum—or taught by math or physics department in a way that is suitable for students of biology. This book offers neuroscience students and researchers a comprehensive account of concepts and methods increasingly used in computational neuroscience. An additional chapter on synchronization, with more advanced material, can be found at the author's website, www.izhikevich.com.


Book Synopsis Dynamical Systems in Neuroscience by : Eugene M. Izhikevich

Download or read book Dynamical Systems in Neuroscience written by Eugene M. Izhikevich and published by MIT Press. This book was released on 2010-01-22 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explains the relationship of electrophysiology, nonlinear dynamics, and the computational properties of neurons, with each concept presented in terms of both neuroscience and mathematics and illustrated using geometrical intuition. In order to model neuronal behavior or to interpret the results of modeling studies, neuroscientists must call upon methods of nonlinear dynamics. This book offers an introduction to nonlinear dynamical systems theory for researchers and graduate students in neuroscience. It also provides an overview of neuroscience for mathematicians who want to learn the basic facts of electrophysiology. Dynamical Systems in Neuroscience presents a systematic study of the relationship of electrophysiology, nonlinear dynamics, and computational properties of neurons. It emphasizes that information processing in the brain depends not only on the electrophysiological properties of neurons but also on their dynamical properties. The book introduces dynamical systems, starting with one- and two-dimensional Hodgkin-Huxley-type models and continuing to a description of bursting systems. Each chapter proceeds from the simple to the complex, and provides sample problems at the end. The book explains all necessary mathematical concepts using geometrical intuition; it includes many figures and few equations, making it especially suitable for non-mathematicians. Each concept is presented in terms of both neuroscience and mathematics, providing a link between the two disciplines. Nonlinear dynamical systems theory is at the core of computational neuroscience research, but it is not a standard part of the graduate neuroscience curriculum—or taught by math or physics department in a way that is suitable for students of biology. This book offers neuroscience students and researchers a comprehensive account of concepts and methods increasingly used in computational neuroscience. An additional chapter on synchronization, with more advanced material, can be found at the author's website, www.izhikevich.com.


Neuronal Dynamics

Neuronal Dynamics

Author: Wulfram Gerstner

Publisher: Cambridge University Press

Published: 2014-07-24

Total Pages: 591

ISBN-13: 1107060834

DOWNLOAD EBOOK

This solid introduction uses the principles of physics and the tools of mathematics to approach fundamental questions of neuroscience.


Book Synopsis Neuronal Dynamics by : Wulfram Gerstner

Download or read book Neuronal Dynamics written by Wulfram Gerstner and published by Cambridge University Press. This book was released on 2014-07-24 with total page 591 pages. Available in PDF, EPUB and Kindle. Book excerpt: This solid introduction uses the principles of physics and the tools of mathematics to approach fundamental questions of neuroscience.


Pattern Formation and Dynamics in Nonequilibrium Systems

Pattern Formation and Dynamics in Nonequilibrium Systems

Author: Michael Cross

Publisher: Cambridge University Press

Published: 2009-07-16

Total Pages: 547

ISBN-13: 0521770505

DOWNLOAD EBOOK

An account of how complex patterns form in sustained nonequilibrium systems; for graduate students in biology, chemistry, engineering, mathematics, and physics.


Book Synopsis Pattern Formation and Dynamics in Nonequilibrium Systems by : Michael Cross

Download or read book Pattern Formation and Dynamics in Nonequilibrium Systems written by Michael Cross and published by Cambridge University Press. This book was released on 2009-07-16 with total page 547 pages. Available in PDF, EPUB and Kindle. Book excerpt: An account of how complex patterns form in sustained nonequilibrium systems; for graduate students in biology, chemistry, engineering, mathematics, and physics.


Introductory Biophysics

Introductory Biophysics

Author: James R. Claycomb

Publisher: Jones & Bartlett Learning

Published: 2011

Total Pages: 375

ISBN-13: 0763779989

DOWNLOAD EBOOK

Designed for biology, physics, and medical students, Introductory Biophysics: Perspectives on the Living State, provides a comprehensive overview of the complex subject of biological physics. The companion CD-ROM, with MATLAB examples and the student version of QuickFieldTM, allows the student to perform biophysical simulations and modify the textbook example files. Included in the text are computer simulations of thermodynamics, astrobiology, the response of living cells to external fields, chaos in population dynamics, numerical models of evolution, electrical circuit models of cell suspension, gap junctions, and neuronal action potentials. With this text students will be able to perform biophysical simulations within hours. MATLAB examples include; the Hodgkin Huxley equations; the FitzHugh-Nagumo model of action potentials; fractal structures in biology; chaos in population dynamics; the cellular automaton model (the game of life); pattern formation in reaction-diffusion systems. QuickFieldTM tutorials and examples include; calculation of currents in biological tissue; cells under electrical stimulation; induced membrane potentials; heat transfer and analysis of stress in biomaterials.


Book Synopsis Introductory Biophysics by : James R. Claycomb

Download or read book Introductory Biophysics written by James R. Claycomb and published by Jones & Bartlett Learning. This book was released on 2011 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designed for biology, physics, and medical students, Introductory Biophysics: Perspectives on the Living State, provides a comprehensive overview of the complex subject of biological physics. The companion CD-ROM, with MATLAB examples and the student version of QuickFieldTM, allows the student to perform biophysical simulations and modify the textbook example files. Included in the text are computer simulations of thermodynamics, astrobiology, the response of living cells to external fields, chaos in population dynamics, numerical models of evolution, electrical circuit models of cell suspension, gap junctions, and neuronal action potentials. With this text students will be able to perform biophysical simulations within hours. MATLAB examples include; the Hodgkin Huxley equations; the FitzHugh-Nagumo model of action potentials; fractal structures in biology; chaos in population dynamics; the cellular automaton model (the game of life); pattern formation in reaction-diffusion systems. QuickFieldTM tutorials and examples include; calculation of currents in biological tissue; cells under electrical stimulation; induced membrane potentials; heat transfer and analysis of stress in biomaterials.


MATLAB for Neuroscientists

MATLAB for Neuroscientists

Author: Pascal Wallisch

Publisher: Academic Press

Published: 2014-01-09

Total Pages: 571

ISBN-13: 0123838371

DOWNLOAD EBOOK

MATLAB for Neuroscientists serves as the only complete study manual and teaching resource for MATLAB, the globally accepted standard for scientific computing, in the neurosciences and psychology. This unique introduction can be used to learn the entire empirical and experimental process (including stimulus generation, experimental control, data collection, data analysis, modeling, and more), and the 2nd Edition continues to ensure that a wide variety of computational problems can be addressed in a single programming environment. This updated edition features additional material on the creation of visual stimuli, advanced psychophysics, analysis of LFP data, choice probabilities, synchrony, and advanced spectral analysis. Users at a variety of levels—advanced undergraduates, beginning graduate students, and researchers looking to modernize their skills—will learn to design and implement their own analytical tools, and gain the fluency required to meet the computational needs of neuroscience practitioners. The first complete volume on MATLAB focusing on neuroscience and psychology applications Problem-based approach with many examples from neuroscience and cognitive psychology using real data Illustrated in full color throughout Careful tutorial approach, by authors who are award-winning educators with strong teaching experience


Book Synopsis MATLAB for Neuroscientists by : Pascal Wallisch

Download or read book MATLAB for Neuroscientists written by Pascal Wallisch and published by Academic Press. This book was released on 2014-01-09 with total page 571 pages. Available in PDF, EPUB and Kindle. Book excerpt: MATLAB for Neuroscientists serves as the only complete study manual and teaching resource for MATLAB, the globally accepted standard for scientific computing, in the neurosciences and psychology. This unique introduction can be used to learn the entire empirical and experimental process (including stimulus generation, experimental control, data collection, data analysis, modeling, and more), and the 2nd Edition continues to ensure that a wide variety of computational problems can be addressed in a single programming environment. This updated edition features additional material on the creation of visual stimuli, advanced psychophysics, analysis of LFP data, choice probabilities, synchrony, and advanced spectral analysis. Users at a variety of levels—advanced undergraduates, beginning graduate students, and researchers looking to modernize their skills—will learn to design and implement their own analytical tools, and gain the fluency required to meet the computational needs of neuroscience practitioners. The first complete volume on MATLAB focusing on neuroscience and psychology applications Problem-based approach with many examples from neuroscience and cognitive psychology using real data Illustrated in full color throughout Careful tutorial approach, by authors who are award-winning educators with strong teaching experience


Control and Nonlinearity

Control and Nonlinearity

Author: Jean-Michel Coron

Publisher: American Mathematical Soc.

Published: 2007

Total Pages: 442

ISBN-13: 0821849182

DOWNLOAD EBOOK

This book presents methods to study the controllability and the stabilization of nonlinear control systems in finite and infinite dimensions. The emphasis is put on specific phenomena due to nonlinearities. In particular, many examples are given where nonlinearities turn out to be essential to get controllability or stabilization. Various methods are presented to study the controllability or to construct stabilizing feedback laws. The power of these methods is illustrated by numerous examples coming from such areas as celestial mechanics, fluid mechanics, and quantum mechanics. The book is addressed to graduate students in mathematics or control theory, and to mathematicians or engineers with an interest in nonlinear control systems governed by ordinary or partial differential equations.


Book Synopsis Control and Nonlinearity by : Jean-Michel Coron

Download or read book Control and Nonlinearity written by Jean-Michel Coron and published by American Mathematical Soc.. This book was released on 2007 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents methods to study the controllability and the stabilization of nonlinear control systems in finite and infinite dimensions. The emphasis is put on specific phenomena due to nonlinearities. In particular, many examples are given where nonlinearities turn out to be essential to get controllability or stabilization. Various methods are presented to study the controllability or to construct stabilizing feedback laws. The power of these methods is illustrated by numerous examples coming from such areas as celestial mechanics, fluid mechanics, and quantum mechanics. The book is addressed to graduate students in mathematics or control theory, and to mathematicians or engineers with an interest in nonlinear control systems governed by ordinary or partial differential equations.


Lévy Processes and Stochastic Calculus

Lévy Processes and Stochastic Calculus

Author: David Applebaum

Publisher: Cambridge University Press

Published: 2009-04-30

Total Pages: 461

ISBN-13: 1139477986

DOWNLOAD EBOOK

Lévy processes form a wide and rich class of random process, and have many applications ranging from physics to finance. Stochastic calculus is the mathematics of systems interacting with random noise. Here, the author ties these two subjects together, beginning with an introduction to the general theory of Lévy processes, then leading on to develop the stochastic calculus for Lévy processes in a direct and accessible way. This fully revised edition now features a number of new topics. These include: regular variation and subexponential distributions; necessary and sufficient conditions for Lévy processes to have finite moments; characterisation of Lévy processes with finite variation; Kunita's estimates for moments of Lévy type stochastic integrals; new proofs of Ito representation and martingale representation theorems for general Lévy processes; multiple Wiener-Lévy integrals and chaos decomposition; an introduction to Malliavin calculus; an introduction to stability theory for Lévy-driven SDEs.


Book Synopsis Lévy Processes and Stochastic Calculus by : David Applebaum

Download or read book Lévy Processes and Stochastic Calculus written by David Applebaum and published by Cambridge University Press. This book was released on 2009-04-30 with total page 461 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lévy processes form a wide and rich class of random process, and have many applications ranging from physics to finance. Stochastic calculus is the mathematics of systems interacting with random noise. Here, the author ties these two subjects together, beginning with an introduction to the general theory of Lévy processes, then leading on to develop the stochastic calculus for Lévy processes in a direct and accessible way. This fully revised edition now features a number of new topics. These include: regular variation and subexponential distributions; necessary and sufficient conditions for Lévy processes to have finite moments; characterisation of Lévy processes with finite variation; Kunita's estimates for moments of Lévy type stochastic integrals; new proofs of Ito representation and martingale representation theorems for general Lévy processes; multiple Wiener-Lévy integrals and chaos decomposition; an introduction to Malliavin calculus; an introduction to stability theory for Lévy-driven SDEs.


Biological Clocks, Rhythms, and Oscillations

Biological Clocks, Rhythms, and Oscillations

Author: Daniel B. Forger

Publisher: MIT Press

Published: 2024-08-06

Total Pages: 369

ISBN-13: 0262552817

DOWNLOAD EBOOK

An introduction to the mathematical, computational, and analytical techniques used for modeling biological rhythms, presenting tools from many disciplines and example applications. All areas of biology and medicine contain rhythms, and these behaviors are best understood through mathematical tools and techniques. This book offers a survey of mathematical, computational, and analytical techniques used for modeling biological rhythms, gathering these methods for the first time in one volume. Drawing on material from such disciplines as mathematical biology, nonlinear dynamics, physics, statistics, and engineering, it presents practical advice and techniques for studying biological rhythms, with a common language. The chapters proceed with increasing mathematical abstraction. Part I, on models, highlights the implicit assumptions and common pitfalls of modeling, and is accessible to readers with basic knowledge of differential equations and linear algebra. Part II, on behaviors, focuses on simpler models, describing common properties of biological rhythms that range from the firing properties of squid giant axon to human circadian rhythms. Part III, on mathematical techniques, guides readers who have specific models or goals in mind. Sections on “frontiers” present the latest research; “theory” sections present interesting mathematical results using more accessible approaches than can be found elsewhere. Each chapter offers exercises. Commented MATLAB code is provided to help readers get practical experience. The book, by an expert in the field, can be used as a textbook for undergraduate courses in mathematical biology or graduate courses in modeling biological rhythms and as a reference for researchers.


Book Synopsis Biological Clocks, Rhythms, and Oscillations by : Daniel B. Forger

Download or read book Biological Clocks, Rhythms, and Oscillations written by Daniel B. Forger and published by MIT Press. This book was released on 2024-08-06 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the mathematical, computational, and analytical techniques used for modeling biological rhythms, presenting tools from many disciplines and example applications. All areas of biology and medicine contain rhythms, and these behaviors are best understood through mathematical tools and techniques. This book offers a survey of mathematical, computational, and analytical techniques used for modeling biological rhythms, gathering these methods for the first time in one volume. Drawing on material from such disciplines as mathematical biology, nonlinear dynamics, physics, statistics, and engineering, it presents practical advice and techniques for studying biological rhythms, with a common language. The chapters proceed with increasing mathematical abstraction. Part I, on models, highlights the implicit assumptions and common pitfalls of modeling, and is accessible to readers with basic knowledge of differential equations and linear algebra. Part II, on behaviors, focuses on simpler models, describing common properties of biological rhythms that range from the firing properties of squid giant axon to human circadian rhythms. Part III, on mathematical techniques, guides readers who have specific models or goals in mind. Sections on “frontiers” present the latest research; “theory” sections present interesting mathematical results using more accessible approaches than can be found elsewhere. Each chapter offers exercises. Commented MATLAB code is provided to help readers get practical experience. The book, by an expert in the field, can be used as a textbook for undergraduate courses in mathematical biology or graduate courses in modeling biological rhythms and as a reference for researchers.