Numerical Methods for Nonlinear Variational Problems

Numerical Methods for Nonlinear Variational Problems

Author: Roland Glowinski

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 506

ISBN-13: 3662126133

DOWNLOAD EBOOK

This book describes the mathematical background and reviews the techniques for solving problems, including those that require large computations such as transonic flows for compressible fluids and the Navier-Stokes equations for incompressible viscous fluids. Finite element approximations and non-linear relaxation, and nonlinear least square methods are all covered in detail, as are many applications. This volume is a classic in a long-awaited softcover re-edition.


Book Synopsis Numerical Methods for Nonlinear Variational Problems by : Roland Glowinski

Download or read book Numerical Methods for Nonlinear Variational Problems written by Roland Glowinski and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the mathematical background and reviews the techniques for solving problems, including those that require large computations such as transonic flows for compressible fluids and the Navier-Stokes equations for incompressible viscous fluids. Finite element approximations and non-linear relaxation, and nonlinear least square methods are all covered in detail, as are many applications. This volume is a classic in a long-awaited softcover re-edition.


Numerical Methods for Nonlinear Engineering Models

Numerical Methods for Nonlinear Engineering Models

Author: John R. Hauser

Publisher: Springer Science & Business Media

Published: 2009-03-24

Total Pages: 1013

ISBN-13: 1402099207

DOWNLOAD EBOOK

There are many books on the use of numerical methods for solving engineering problems and for modeling of engineering artifacts. In addition there are many styles of such presentations ranging from books with a major emphasis on theory to books with an emphasis on applications. The purpose of this book is hopefully to present a somewhat different approach to the use of numerical methods for - gineering applications. Engineering models are in general nonlinear models where the response of some appropriate engineering variable depends in a nonlinear manner on the - plication of some independent parameter. It is certainly true that for many types of engineering models it is sufficient to approximate the real physical world by some linear model. However, when engineering environments are pushed to - treme conditions, nonlinear effects are always encountered. It is also such - treme conditions that are of major importance in determining the reliability or failure limits of engineering systems. Hence it is essential than engineers have a toolbox of modeling techniques that can be used to model nonlinear engineering systems. Such a set of basic numerical methods is the topic of this book. For each subject area treated, nonlinear models are incorporated into the discussion from the very beginning and linear models are simply treated as special cases of more general nonlinear models. This is a basic and fundamental difference in this book from most books on numerical methods.


Book Synopsis Numerical Methods for Nonlinear Engineering Models by : John R. Hauser

Download or read book Numerical Methods for Nonlinear Engineering Models written by John R. Hauser and published by Springer Science & Business Media. This book was released on 2009-03-24 with total page 1013 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are many books on the use of numerical methods for solving engineering problems and for modeling of engineering artifacts. In addition there are many styles of such presentations ranging from books with a major emphasis on theory to books with an emphasis on applications. The purpose of this book is hopefully to present a somewhat different approach to the use of numerical methods for - gineering applications. Engineering models are in general nonlinear models where the response of some appropriate engineering variable depends in a nonlinear manner on the - plication of some independent parameter. It is certainly true that for many types of engineering models it is sufficient to approximate the real physical world by some linear model. However, when engineering environments are pushed to - treme conditions, nonlinear effects are always encountered. It is also such - treme conditions that are of major importance in determining the reliability or failure limits of engineering systems. Hence it is essential than engineers have a toolbox of modeling techniques that can be used to model nonlinear engineering systems. Such a set of basic numerical methods is the topic of this book. For each subject area treated, nonlinear models are incorporated into the discussion from the very beginning and linear models are simply treated as special cases of more general nonlinear models. This is a basic and fundamental difference in this book from most books on numerical methods.


Numerical Solution of Nonlinear Equations

Numerical Solution of Nonlinear Equations

Author: E.L. Allgöwer

Publisher: Springer

Published: 2006-11-14

Total Pages: 457

ISBN-13: 3540387811

DOWNLOAD EBOOK


Book Synopsis Numerical Solution of Nonlinear Equations by : E.L. Allgöwer

Download or read book Numerical Solution of Nonlinear Equations written by E.L. Allgöwer and published by Springer. This book was released on 2006-11-14 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt:


The Numerical Solution of Nonlinear Problems

The Numerical Solution of Nonlinear Problems

Author: Christopher T. H. Baker

Publisher: Oxford University Press, USA

Published: 1981

Total Pages: 392

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis The Numerical Solution of Nonlinear Problems by : Christopher T. H. Baker

Download or read book The Numerical Solution of Nonlinear Problems written by Christopher T. H. Baker and published by Oxford University Press, USA. This book was released on 1981 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Numerical Methods for Nonlinear Partial Differential Equations

Numerical Methods for Nonlinear Partial Differential Equations

Author: Sören Bartels

Publisher: Springer

Published: 2015-01-19

Total Pages: 394

ISBN-13: 3319137972

DOWNLOAD EBOOK

The description of many interesting phenomena in science and engineering leads to infinite-dimensional minimization or evolution problems that define nonlinear partial differential equations. While the development and analysis of numerical methods for linear partial differential equations is nearly complete, only few results are available in the case of nonlinear equations. This monograph devises numerical methods for nonlinear model problems arising in the mathematical description of phase transitions, large bending problems, image processing, and inelastic material behavior. For each of these problems the underlying mathematical model is discussed, the essential analytical properties are explained, and the proposed numerical method is rigorously analyzed. The practicality of the algorithms is illustrated by means of short implementations.


Book Synopsis Numerical Methods for Nonlinear Partial Differential Equations by : Sören Bartels

Download or read book Numerical Methods for Nonlinear Partial Differential Equations written by Sören Bartels and published by Springer. This book was released on 2015-01-19 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: The description of many interesting phenomena in science and engineering leads to infinite-dimensional minimization or evolution problems that define nonlinear partial differential equations. While the development and analysis of numerical methods for linear partial differential equations is nearly complete, only few results are available in the case of nonlinear equations. This monograph devises numerical methods for nonlinear model problems arising in the mathematical description of phase transitions, large bending problems, image processing, and inelastic material behavior. For each of these problems the underlying mathematical model is discussed, the essential analytical properties are explained, and the proposed numerical method is rigorously analyzed. The practicality of the algorithms is illustrated by means of short implementations.


Numerical Methods for Unconstrained Optimization and Nonlinear Equations

Numerical Methods for Unconstrained Optimization and Nonlinear Equations

Author: J. E. Dennis, Jr.

Publisher: SIAM

Published: 1996-12-01

Total Pages: 394

ISBN-13: 9781611971200

DOWNLOAD EBOOK

This book has become the standard for a complete, state-of-the-art description of the methods for unconstrained optimization and systems of nonlinear equations. Originally published in 1983, it provides information needed to understand both the theory and the practice of these methods and provides pseudocode for the problems. The algorithms covered are all based on Newton's method or "quasi-Newton" methods, and the heart of the book is the material on computational methods for multidimensional unconstrained optimization and nonlinear equation problems. The republication of this book by SIAM is driven by a continuing demand for specific and sound advice on how to solve real problems. The level of presentation is consistent throughout, with a good mix of examples and theory, making it a valuable text at both the graduate and undergraduate level. It has been praised as excellent for courses with approximately the same name as the book title and would also be useful as a supplemental text for a nonlinear programming or a numerical analysis course. Many exercises are provided to illustrate and develop the ideas in the text. A large appendix provides a mechanism for class projects and a reference for readers who want the details of the algorithms. Practitioners may use this book for self-study and reference. For complete understanding, readers should have a background in calculus and linear algebra. The book does contain background material in multivariable calculus and numerical linear algebra.


Book Synopsis Numerical Methods for Unconstrained Optimization and Nonlinear Equations by : J. E. Dennis, Jr.

Download or read book Numerical Methods for Unconstrained Optimization and Nonlinear Equations written by J. E. Dennis, Jr. and published by SIAM. This book was released on 1996-12-01 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book has become the standard for a complete, state-of-the-art description of the methods for unconstrained optimization and systems of nonlinear equations. Originally published in 1983, it provides information needed to understand both the theory and the practice of these methods and provides pseudocode for the problems. The algorithms covered are all based on Newton's method or "quasi-Newton" methods, and the heart of the book is the material on computational methods for multidimensional unconstrained optimization and nonlinear equation problems. The republication of this book by SIAM is driven by a continuing demand for specific and sound advice on how to solve real problems. The level of presentation is consistent throughout, with a good mix of examples and theory, making it a valuable text at both the graduate and undergraduate level. It has been praised as excellent for courses with approximately the same name as the book title and would also be useful as a supplemental text for a nonlinear programming or a numerical analysis course. Many exercises are provided to illustrate and develop the ideas in the text. A large appendix provides a mechanism for class projects and a reference for readers who want the details of the algorithms. Practitioners may use this book for self-study and reference. For complete understanding, readers should have a background in calculus and linear algebra. The book does contain background material in multivariable calculus and numerical linear algebra.


Newton Methods for Nonlinear Problems

Newton Methods for Nonlinear Problems

Author: Peter Deuflhard

Publisher: Springer Science & Business Media

Published: 2005-01-13

Total Pages: 444

ISBN-13: 9783540210993

DOWNLOAD EBOOK

This book deals with the efficient numerical solution of challenging nonlinear problems in science and engineering, both in finite and in infinite dimension. Its focus is on local and global Newton methods for direct problems or Gauss-Newton methods for inverse problems. Lots of numerical illustrations, comparison tables, and exercises make the text useful in computational mathematics classes. At the same time, the book opens many directions for possible future research.


Book Synopsis Newton Methods for Nonlinear Problems by : Peter Deuflhard

Download or read book Newton Methods for Nonlinear Problems written by Peter Deuflhard and published by Springer Science & Business Media. This book was released on 2005-01-13 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with the efficient numerical solution of challenging nonlinear problems in science and engineering, both in finite and in infinite dimension. Its focus is on local and global Newton methods for direct problems or Gauss-Newton methods for inverse problems. Lots of numerical illustrations, comparison tables, and exercises make the text useful in computational mathematics classes. At the same time, the book opens many directions for possible future research.


Lectures on Numerical Methods for Non-Linear Variational Problems

Lectures on Numerical Methods for Non-Linear Variational Problems

Author: R. Glowinski

Publisher: Springer Science & Business Media

Published: 2008-01-22

Total Pages: 507

ISBN-13: 3540775064

DOWNLOAD EBOOK

When Herb Keller suggested, more than two years ago, that we update our lectures held at the Tata Institute of Fundamental Research in 1977, and then have it published in the collection Springer Series in Computational Physics, we thought, at first, that it would be an easy task. Actually, we realized very quickly that it would be more complicated than what it seemed at first glance, for several reasons: 1. The first version of Numerical Methods for Nonlinear Variational Problems was, in fact, part of a set of monographs on numerical mat- matics published, in a short span of time, by the Tata Institute of Fun- mental Research in its well-known series Lectures on Mathematics and Physics; as might be expected, the first version systematically used the material of the above monographs, this being particularly true for Lectures on the Finite Element Method by P. G. Ciarlet and Lectures on Optimization—Theory and Algorithms by J. Cea. This second version had to be more self-contained. This necessity led to some minor additions in Chapters I-IV of the original version, and to the introduction of a chapter (namely, Chapter Y of this book) on relaxation methods, since these methods play an important role in various parts of this book.


Book Synopsis Lectures on Numerical Methods for Non-Linear Variational Problems by : R. Glowinski

Download or read book Lectures on Numerical Methods for Non-Linear Variational Problems written by R. Glowinski and published by Springer Science & Business Media. This book was released on 2008-01-22 with total page 507 pages. Available in PDF, EPUB and Kindle. Book excerpt: When Herb Keller suggested, more than two years ago, that we update our lectures held at the Tata Institute of Fundamental Research in 1977, and then have it published in the collection Springer Series in Computational Physics, we thought, at first, that it would be an easy task. Actually, we realized very quickly that it would be more complicated than what it seemed at first glance, for several reasons: 1. The first version of Numerical Methods for Nonlinear Variational Problems was, in fact, part of a set of monographs on numerical mat- matics published, in a short span of time, by the Tata Institute of Fun- mental Research in its well-known series Lectures on Mathematics and Physics; as might be expected, the first version systematically used the material of the above monographs, this being particularly true for Lectures on the Finite Element Method by P. G. Ciarlet and Lectures on Optimization—Theory and Algorithms by J. Cea. This second version had to be more self-contained. This necessity led to some minor additions in Chapters I-IV of the original version, and to the introduction of a chapter (namely, Chapter Y of this book) on relaxation methods, since these methods play an important role in various parts of this book.


Numerical Solutions of Realistic Nonlinear Phenomena

Numerical Solutions of Realistic Nonlinear Phenomena

Author: J. A. Tenreiro Machado

Publisher: Springer Nature

Published: 2020-02-19

Total Pages: 231

ISBN-13: 3030371417

DOWNLOAD EBOOK

This collection covers new aspects of numerical methods in applied mathematics, engineering, and health sciences. It provides recent theoretical developments and new techniques based on optimization theory, partial differential equations (PDEs), mathematical modeling and fractional calculus that can be used to model and understand complex behavior in natural phenomena. Specific topics covered in detail include new numerical methods for nonlinear partial differential equations, global optimization, unconstrained optimization, detection of HIV- Protease, modelling with new fractional operators, analysis of biological models, and stochastic modelling.


Book Synopsis Numerical Solutions of Realistic Nonlinear Phenomena by : J. A. Tenreiro Machado

Download or read book Numerical Solutions of Realistic Nonlinear Phenomena written by J. A. Tenreiro Machado and published by Springer Nature. This book was released on 2020-02-19 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection covers new aspects of numerical methods in applied mathematics, engineering, and health sciences. It provides recent theoretical developments and new techniques based on optimization theory, partial differential equations (PDEs), mathematical modeling and fractional calculus that can be used to model and understand complex behavior in natural phenomena. Specific topics covered in detail include new numerical methods for nonlinear partial differential equations, global optimization, unconstrained optimization, detection of HIV- Protease, modelling with new fractional operators, analysis of biological models, and stochastic modelling.


Numerical Solution of Nonlinear Boundary Value Problems with Applications

Numerical Solution of Nonlinear Boundary Value Problems with Applications

Author: Milan Kubicek

Publisher: Courier Corporation

Published: 2008-01-01

Total Pages: 338

ISBN-13: 0486463001

DOWNLOAD EBOOK

A survey of the development, analysis, and application of numerical techniques in solving nonlinear boundary value problems, this text presents numerical analysis as a working tool for physicists and engineers. Starting with a survey of accomplishments in the field, it explores initial and boundary value problems for ordinary differential equations, linear boundary value problems, and the numerical realization of parametric studies in nonlinear boundary value problems. The authors--Milan Kubicek, Professor at the Prague Institute of Chemical Technology, and Vladimir Hlavacek, Professor at the University of Buffalo--emphasize the description and straightforward application of numerical techniques rather than underlying theory. This approach reflects their extensive experience with the application of diverse numerical algorithms.


Book Synopsis Numerical Solution of Nonlinear Boundary Value Problems with Applications by : Milan Kubicek

Download or read book Numerical Solution of Nonlinear Boundary Value Problems with Applications written by Milan Kubicek and published by Courier Corporation. This book was released on 2008-01-01 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: A survey of the development, analysis, and application of numerical techniques in solving nonlinear boundary value problems, this text presents numerical analysis as a working tool for physicists and engineers. Starting with a survey of accomplishments in the field, it explores initial and boundary value problems for ordinary differential equations, linear boundary value problems, and the numerical realization of parametric studies in nonlinear boundary value problems. The authors--Milan Kubicek, Professor at the Prague Institute of Chemical Technology, and Vladimir Hlavacek, Professor at the University of Buffalo--emphasize the description and straightforward application of numerical techniques rather than underlying theory. This approach reflects their extensive experience with the application of diverse numerical algorithms.