Thermoelastic Models of Continua

Thermoelastic Models of Continua

Author: D. Iesan

Publisher: Springer Science & Business Media

Published: 2013-03-19

Total Pages: 309

ISBN-13: 1402023103

DOWNLOAD EBOOK

This volume is concerned with the basic problems of the theory of thermoelasticity for three models of continuous bodies: materials with voids, micropolar solids and nonsimple bodies. Beginning with the basic laws of thermodynamics, the theory of thermoelastic materials with voids is treated. Two subsequent chapters cover the analysis of the linear theory of micropolar thermoelastic bodies. The book concludes with a study of nonsimple thermoelastic materials, which are characterised by the inclusion of higher gradients of displacement in the basic postulates. Relevant examples and exercises which illustrate the theory are given throughout the text. The book should be of interest to mathematicians and specialists working in the fields of elasticity, thermoelasticity, civil engineering and geophysics.


Book Synopsis Thermoelastic Models of Continua by : D. Iesan

Download or read book Thermoelastic Models of Continua written by D. Iesan and published by Springer Science & Business Media. This book was released on 2013-03-19 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is concerned with the basic problems of the theory of thermoelasticity for three models of continuous bodies: materials with voids, micropolar solids and nonsimple bodies. Beginning with the basic laws of thermodynamics, the theory of thermoelastic materials with voids is treated. Two subsequent chapters cover the analysis of the linear theory of micropolar thermoelastic bodies. The book concludes with a study of nonsimple thermoelastic materials, which are characterised by the inclusion of higher gradients of displacement in the basic postulates. Relevant examples and exercises which illustrate the theory are given throughout the text. The book should be of interest to mathematicians and specialists working in the fields of elasticity, thermoelasticity, civil engineering and geophysics.


Thermoelastic Models of Continua

Thermoelastic Models of Continua

Author: Dorin Iesan

Publisher: Springer

Published: 2014-03-14

Total Pages: 304

ISBN-13: 9789401570152

DOWNLOAD EBOOK

This volume is concerned with the basic problems of the theory of thermoelasticity for three models of continuous bodies: materials with voids, micropolar solids and nonsimple bodies. Beginning with the basic laws of thermodynamics, the theory of thermoelastic materials with voids is treated. Two subsequent chapters cover the analysis of the linear theory of micropolar thermoelastic bodies. The book concludes with a study of nonsimple thermoelastic materials, which are characterised by the inclusion of higher gradients of displacement in the basic postulates. Relevant examples and exercises which illustrate the theory are given throughout the text. The book should be of interest to mathematicians and specialists working in the fields of elasticity, thermoelasticity, civil engineering and geophysics.


Book Synopsis Thermoelastic Models of Continua by : Dorin Iesan

Download or read book Thermoelastic Models of Continua written by Dorin Iesan and published by Springer. This book was released on 2014-03-14 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is concerned with the basic problems of the theory of thermoelasticity for three models of continuous bodies: materials with voids, micropolar solids and nonsimple bodies. Beginning with the basic laws of thermodynamics, the theory of thermoelastic materials with voids is treated. Two subsequent chapters cover the analysis of the linear theory of micropolar thermoelastic bodies. The book concludes with a study of nonsimple thermoelastic materials, which are characterised by the inclusion of higher gradients of displacement in the basic postulates. Relevant examples and exercises which illustrate the theory are given throughout the text. The book should be of interest to mathematicians and specialists working in the fields of elasticity, thermoelasticity, civil engineering and geophysics.


Thermomechanics of Continua

Thermomechanics of Continua

Author: Krzysztof Wilmanski

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 284

ISBN-13: 3642589340

DOWNLOAD EBOOK

The notion of continuum thermodynamics, adopted in this book, is primarily understood as a strategy for development of continuous models of various physical systems. The examples of such a strategy presented in the book have both the classical character (e. g. thermoelastic materials, viscous fluids, mixtures) and the extended one (ideal gases, Maxwellian fluids, thermoviscoelastic solids etc. ). The latter has been limited intentionally to non-relativistic models; many important relativistic applications of the true extended thermodynamics will not be considered but can be found in the other sources. The notion of extended thermodynamics is also adopted in a less strict sense than suggested by the founders. For instance, in some cases we allow the constitutive dependence not only on the fields themselves but also on some derivatives. In this way, the new thermodynamical models may have some features of the usual nonequilibrium models and some of those of the extended models. This deviation from the strategy of extended thermodynamics is motivated by practical aspects; frequently the technical considerations of extended thermodynamics are so involved that one can no longer see important physical properties of the systems. This book has a different form from that usually found in books on continuum mechanics and continuum thermodynamics. The presentation of the formal structure of continuum thermodynamics is not always as rigorous as a mathematician might anticipate and the choice of physical subjects is too disperse to make a physicist happy.


Book Synopsis Thermomechanics of Continua by : Krzysztof Wilmanski

Download or read book Thermomechanics of Continua written by Krzysztof Wilmanski and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: The notion of continuum thermodynamics, adopted in this book, is primarily understood as a strategy for development of continuous models of various physical systems. The examples of such a strategy presented in the book have both the classical character (e. g. thermoelastic materials, viscous fluids, mixtures) and the extended one (ideal gases, Maxwellian fluids, thermoviscoelastic solids etc. ). The latter has been limited intentionally to non-relativistic models; many important relativistic applications of the true extended thermodynamics will not be considered but can be found in the other sources. The notion of extended thermodynamics is also adopted in a less strict sense than suggested by the founders. For instance, in some cases we allow the constitutive dependence not only on the fields themselves but also on some derivatives. In this way, the new thermodynamical models may have some features of the usual nonequilibrium models and some of those of the extended models. This deviation from the strategy of extended thermodynamics is motivated by practical aspects; frequently the technical considerations of extended thermodynamics are so involved that one can no longer see important physical properties of the systems. This book has a different form from that usually found in books on continuum mechanics and continuum thermodynamics. The presentation of the formal structure of continuum thermodynamics is not always as rigorous as a mathematician might anticipate and the choice of physical subjects is too disperse to make a physicist happy.


Mathematical Aspects of Multi–Porosity Continua

Mathematical Aspects of Multi–Porosity Continua

Author: Brian Straughan

Publisher: Springer

Published: 2017-11-30

Total Pages: 214

ISBN-13: 331970172X

DOWNLOAD EBOOK

This book is devoted to describing theories for porous media where such pores have an inbuilt macro structure and a micro structure. For example, a double porosity material has pores on a macro scale, but additionally there are cracks or fissures in the solid skeleton. The actual body is allowed to deform and thus the underlying theory is one of elasticity. Various different descriptions are reviewed. Chapter 1 introduces the classical linear theory of elastodynamics together with uniqueness and continuous dependence results. Chapters 2 and 3 review developments of theories for double and triple porosity using a pressure-displacement structure and also using voids-displacement. Chapter 4 compares various aspects of the pressure-displacement and voids-displacement theories via uniqueness studies and wave motion analysis. Mathematical analyses of double and triple porosity materials are included concentrating on uniqueness and stability studies in chapters 5 to 7. In chapters 8 and 9 the emphasis is on wave motion in double porosity materials with special attention paid to nonlinear waves. The final chapter embraces a novel area where an elastic body with a double porosity structure is analyzed, but the thermodynamics allows for heat to travel as a wave rather than simply by diffusion. This book will be of value to mathematicians, theoretical engineers and other practitioners who are interested in double or triple porosity elasticity and its relevance to many diverse applications.


Book Synopsis Mathematical Aspects of Multi–Porosity Continua by : Brian Straughan

Download or read book Mathematical Aspects of Multi–Porosity Continua written by Brian Straughan and published by Springer. This book was released on 2017-11-30 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to describing theories for porous media where such pores have an inbuilt macro structure and a micro structure. For example, a double porosity material has pores on a macro scale, but additionally there are cracks or fissures in the solid skeleton. The actual body is allowed to deform and thus the underlying theory is one of elasticity. Various different descriptions are reviewed. Chapter 1 introduces the classical linear theory of elastodynamics together with uniqueness and continuous dependence results. Chapters 2 and 3 review developments of theories for double and triple porosity using a pressure-displacement structure and also using voids-displacement. Chapter 4 compares various aspects of the pressure-displacement and voids-displacement theories via uniqueness studies and wave motion analysis. Mathematical analyses of double and triple porosity materials are included concentrating on uniqueness and stability studies in chapters 5 to 7. In chapters 8 and 9 the emphasis is on wave motion in double porosity materials with special attention paid to nonlinear waves. The final chapter embraces a novel area where an elastic body with a double porosity structure is analyzed, but the thermodynamics allows for heat to travel as a wave rather than simply by diffusion. This book will be of value to mathematicians, theoretical engineers and other practitioners who are interested in double or triple porosity elasticity and its relevance to many diverse applications.


Higher Gradient Materials and Related Generalized Continua

Higher Gradient Materials and Related Generalized Continua

Author: Holm Altenbach

Publisher: Springer Nature

Published: 2019-11-04

Total Pages: 231

ISBN-13: 303030406X

DOWNLOAD EBOOK

This book discusses recent findings and advanced theories presented at two workshops at TU Berlin in 2017 and 2018. It underlines several advantages of generalized continuum models compared to the classical Cauchy continuum, which although widely used in engineering practice, has a number of limitations, such as: • The structural size is very small. • The microstructure is complex. • The effects are localized. As such, the development of generalized continuum models is helpful and results in a better description of the behavior of structures or materials. At the same time, there are more and more experimental studies supporting the new models because the number of material parameters is higher.


Book Synopsis Higher Gradient Materials and Related Generalized Continua by : Holm Altenbach

Download or read book Higher Gradient Materials and Related Generalized Continua written by Holm Altenbach and published by Springer Nature. This book was released on 2019-11-04 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses recent findings and advanced theories presented at two workshops at TU Berlin in 2017 and 2018. It underlines several advantages of generalized continuum models compared to the classical Cauchy continuum, which although widely used in engineering practice, has a number of limitations, such as: • The structural size is very small. • The microstructure is complex. • The effects are localized. As such, the development of generalized continuum models is helpful and results in a better description of the behavior of structures or materials. At the same time, there are more and more experimental studies supporting the new models because the number of material parameters is higher.


11th Chaotic Modeling and Simulation International Conference

11th Chaotic Modeling and Simulation International Conference

Author: Christos H. Skiadas

Publisher: Springer

Published: 2019-05-28

Total Pages: 318

ISBN-13: 3030152979

DOWNLOAD EBOOK

Gathering the proceedings of the 11th CHAOS2018 International Conference, this book highlights recent developments in nonlinear, dynamical and complex systems. The conference was intended to provide an essential forum for Scientists and Engineers to exchange ideas, methods, and techniques in the field of Nonlinear Dynamics, Chaos, Fractals and their applications in General Science and the Engineering Sciences. The respective chapters address key methods, empirical data and computer techniques, as well as major theoretical advances in the applied nonlinear field. Beyond showcasing the state of the art, the book will help academic and industrial researchers alike apply chaotic theory in their studies.


Book Synopsis 11th Chaotic Modeling and Simulation International Conference by : Christos H. Skiadas

Download or read book 11th Chaotic Modeling and Simulation International Conference written by Christos H. Skiadas and published by Springer. This book was released on 2019-05-28 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gathering the proceedings of the 11th CHAOS2018 International Conference, this book highlights recent developments in nonlinear, dynamical and complex systems. The conference was intended to provide an essential forum for Scientists and Engineers to exchange ideas, methods, and techniques in the field of Nonlinear Dynamics, Chaos, Fractals and their applications in General Science and the Engineering Sciences. The respective chapters address key methods, empirical data and computer techniques, as well as major theoretical advances in the applied nonlinear field. Beyond showcasing the state of the art, the book will help academic and industrial researchers alike apply chaotic theory in their studies.


Thermoelasticity with Finite Wave Speeds

Thermoelasticity with Finite Wave Speeds

Author: Józef Ignaczak

Publisher: Oxford University Press

Published: 2010

Total Pages: 432

ISBN-13: 0199541647

DOWNLOAD EBOOK

A unique monograph in a fast developing field of generalized thermoelasticity, an area of active research in continuum mechanics, focusing on thermoelasticity governed by hyperbolic equations, rather than on a wide range of continuum theories.


Book Synopsis Thermoelasticity with Finite Wave Speeds by : Józef Ignaczak

Download or read book Thermoelasticity with Finite Wave Speeds written by Józef Ignaczak and published by Oxford University Press. This book was released on 2010 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: A unique monograph in a fast developing field of generalized thermoelasticity, an area of active research in continuum mechanics, focusing on thermoelasticity governed by hyperbolic equations, rather than on a wide range of continuum theories.


Mathematical Modelling of Continuum Physics

Mathematical Modelling of Continuum Physics

Author: Angelo Morro

Publisher: Springer Nature

Published: 2023-03-19

Total Pages: 1018

ISBN-13: 3031208145

DOWNLOAD EBOOK

This monograph provides a comprehensive and self-contained treatment of continuum physics, illustrating a systematic approach to the constitutive equations for wide-ranging classes of materials. Derivations of results are detailed through careful proofs, and the contents have been developed to ensure a self-contained and consistent presentation. Part I reviews the kinematics of continuous bodies and illustrates the general setting of balance laws. Essential preliminaries to continuum physics – such as reference and current configurations, transport relations, singular surfaces, objectivity, and objective time derivatives – are covered in detail. A chapter on balance equations then develops the balance laws of mass, linear momentum, angular momentum, energy, and entropy, as well as the balance laws in electromagnetism. Part II is devoted to the general requirements on constitutive models, emphasizing the application of objectivity and consistency with the second law of thermodynamics. Common models of simple materials are then reviewed, and in this framework, detailed descriptions are given of solids (thermoelastic, elastic, and dissipative) and fluids (elastic, thermoelastic, viscous, and Newtonian). A wide of variety of constitutive models are investigated in Part III, which consists of separate chapters focused on several types of non-simple materials: materials with memory, aging and higher-order grade materials, mixtures, micropolar media, and porous materials. The interaction of the electromagnetic field with deformation is also examined within electroelasticity, magnetoelasticity, and plasma theory. Hysteretic effects and phase transitions are considered in Part IV. A new approach is established by treating entropy production as a constitutive function in itself, as is the case for entropy and entropy flux. This proves to be conceptually and practically advantageous in the modelling of nonlinear phenomena, such as those occurring in hysteretic continua (e.g., plasticity, electromagnetism, and the physics of shape memory alloys). Mathematical Modelling of Continuum Physics will be an important reference for mathematicians, engineers, physicists, and other scientists interested in research or applications of continuum mechanics.


Book Synopsis Mathematical Modelling of Continuum Physics by : Angelo Morro

Download or read book Mathematical Modelling of Continuum Physics written by Angelo Morro and published by Springer Nature. This book was released on 2023-03-19 with total page 1018 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph provides a comprehensive and self-contained treatment of continuum physics, illustrating a systematic approach to the constitutive equations for wide-ranging classes of materials. Derivations of results are detailed through careful proofs, and the contents have been developed to ensure a self-contained and consistent presentation. Part I reviews the kinematics of continuous bodies and illustrates the general setting of balance laws. Essential preliminaries to continuum physics – such as reference and current configurations, transport relations, singular surfaces, objectivity, and objective time derivatives – are covered in detail. A chapter on balance equations then develops the balance laws of mass, linear momentum, angular momentum, energy, and entropy, as well as the balance laws in electromagnetism. Part II is devoted to the general requirements on constitutive models, emphasizing the application of objectivity and consistency with the second law of thermodynamics. Common models of simple materials are then reviewed, and in this framework, detailed descriptions are given of solids (thermoelastic, elastic, and dissipative) and fluids (elastic, thermoelastic, viscous, and Newtonian). A wide of variety of constitutive models are investigated in Part III, which consists of separate chapters focused on several types of non-simple materials: materials with memory, aging and higher-order grade materials, mixtures, micropolar media, and porous materials. The interaction of the electromagnetic field with deformation is also examined within electroelasticity, magnetoelasticity, and plasma theory. Hysteretic effects and phase transitions are considered in Part IV. A new approach is established by treating entropy production as a constitutive function in itself, as is the case for entropy and entropy flux. This proves to be conceptually and practically advantageous in the modelling of nonlinear phenomena, such as those occurring in hysteretic continua (e.g., plasticity, electromagnetism, and the physics of shape memory alloys). Mathematical Modelling of Continuum Physics will be an important reference for mathematicians, engineers, physicists, and other scientists interested in research or applications of continuum mechanics.


Thermoelastic Problems and the Thermodynamics of Continua

Thermoelastic Problems and the Thermodynamics of Continua

Author: Louis M. Brock

Publisher:

Published: 1995

Total Pages: 82

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Thermoelastic Problems and the Thermodynamics of Continua by : Louis M. Brock

Download or read book Thermoelastic Problems and the Thermodynamics of Continua written by Louis M. Brock and published by . This book was released on 1995 with total page 82 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Thermoelasticity

Thermoelasticity

Author: Witold Nowacki

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 579

ISBN-13: 1483162486

DOWNLOAD EBOOK

Thermoelasticity, Second Edition reviews advances in thermoelasticity and covers topics ranging from stationary problems of thermoelasticity to variational theorems of stationary thermoelasticity; stresses due to the action of a discontinuous temperature field in an infinite elastic body; the action of heat sources in the elastic space; and thermal inclusions in an infinite disc and semi-infinite disc. Three different sets of differential equations describing the fields of strain and temperature are presented. This book is comprised of 12 chapters and begins with a discussion on basic relations and equations of thermoelasticity. Thermoelasticity is treated as a synthesis of the theory of elasticity and the theory of heat conduction. Some particular cases of thermoelasticity are then investigated, including stationary problems, the theory of thermal stresses, and classical dynamic elasticity. Dynamic effects due to the action of a non-stationary temperature field are examined, along with plane harmonic waves in an elastic space and thermal stresses in plates, shells, and viscoelastic bodies. The final chapter focuses on micropolar thermoelasticity, magnetothermoelasticity, and thermopiezoelectricity. This monograph will be of interest to physicists and mechanical engineers.


Book Synopsis Thermoelasticity by : Witold Nowacki

Download or read book Thermoelasticity written by Witold Nowacki and published by Elsevier. This book was released on 2013-10-22 with total page 579 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thermoelasticity, Second Edition reviews advances in thermoelasticity and covers topics ranging from stationary problems of thermoelasticity to variational theorems of stationary thermoelasticity; stresses due to the action of a discontinuous temperature field in an infinite elastic body; the action of heat sources in the elastic space; and thermal inclusions in an infinite disc and semi-infinite disc. Three different sets of differential equations describing the fields of strain and temperature are presented. This book is comprised of 12 chapters and begins with a discussion on basic relations and equations of thermoelasticity. Thermoelasticity is treated as a synthesis of the theory of elasticity and the theory of heat conduction. Some particular cases of thermoelasticity are then investigated, including stationary problems, the theory of thermal stresses, and classical dynamic elasticity. Dynamic effects due to the action of a non-stationary temperature field are examined, along with plane harmonic waves in an elastic space and thermal stresses in plates, shells, and viscoelastic bodies. The final chapter focuses on micropolar thermoelasticity, magnetothermoelasticity, and thermopiezoelectricity. This monograph will be of interest to physicists and mechanical engineers.