Thin Film Analysis by X-Ray Scattering

Thin Film Analysis by X-Ray Scattering

Author: Mario Birkholz

Publisher: John Wiley & Sons

Published: 2006-05-12

Total Pages: 378

ISBN-13: 3527607048

DOWNLOAD EBOOK

With contributions by Paul F. Fewster and Christoph Genzel While X-ray diffraction investigation of powders and polycrystalline matter was at the forefront of materials science in the 1960s and 70s, high-tech applications at the beginning of the 21st century are driven by the materials science of thin films. Very much an interdisciplinary field, chemists, biochemists, materials scientists, physicists and engineers all have a common interest in thin films and their manifold uses and applications. Grain size, porosity, density, preferred orientation and other properties are important to know: whether thin films fulfill their intended function depends crucially on their structure and morphology once a chemical composition has been chosen. Although their backgrounds differ greatly, all the involved specialists a profound understanding of how structural properties may be determined in order to perform their respective tasks in search of new and modern materials, coatings and functions. The author undertakes this in-depth introduction to the field of thin film X-ray characterization in a clear and precise manner.


Book Synopsis Thin Film Analysis by X-Ray Scattering by : Mario Birkholz

Download or read book Thin Film Analysis by X-Ray Scattering written by Mario Birkholz and published by John Wiley & Sons. This book was released on 2006-05-12 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: With contributions by Paul F. Fewster and Christoph Genzel While X-ray diffraction investigation of powders and polycrystalline matter was at the forefront of materials science in the 1960s and 70s, high-tech applications at the beginning of the 21st century are driven by the materials science of thin films. Very much an interdisciplinary field, chemists, biochemists, materials scientists, physicists and engineers all have a common interest in thin films and their manifold uses and applications. Grain size, porosity, density, preferred orientation and other properties are important to know: whether thin films fulfill their intended function depends crucially on their structure and morphology once a chemical composition has been chosen. Although their backgrounds differ greatly, all the involved specialists a profound understanding of how structural properties may be determined in order to perform their respective tasks in search of new and modern materials, coatings and functions. The author undertakes this in-depth introduction to the field of thin film X-ray characterization in a clear and precise manner.


Thin Film Analysis by X-Ray Scattering

Thin Film Analysis by X-Ray Scattering

Author: Mario Birkholz

Publisher: Wiley-VCH

Published: 2005-12-23

Total Pages: 378

ISBN-13: 9783527310524

DOWNLOAD EBOOK

With contributions by Paul F. Fewster and Christoph Genzel While X-ray diffraction investigation of powders and polycrystalline matter was at the forefront of materials science in the 1960s and 70s, high-tech applications at the beginning of the 21st century are driven by the materials science of thin films. Very much an interdisciplinary field, chemists, biochemists, materials scientists, physicists and engineers all have a common interest in thin films and their manifold uses and applications. Grain size, porosity, density, preferred orientation and other properties are important to know: whether thin films fulfill their intended function depends crucially on their structure and morphology once a chemical composition has been chosen. Although their backgrounds differ greatly, all the involved specialists a profound understanding of how structural properties may be determined in order to perform their respective tasks in search of new and modern materials, coatings and functions. The author undertakes this in-depth introduction to the field of thin film X-ray characterization in a clear and precise manner.


Book Synopsis Thin Film Analysis by X-Ray Scattering by : Mario Birkholz

Download or read book Thin Film Analysis by X-Ray Scattering written by Mario Birkholz and published by Wiley-VCH. This book was released on 2005-12-23 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: With contributions by Paul F. Fewster and Christoph Genzel While X-ray diffraction investigation of powders and polycrystalline matter was at the forefront of materials science in the 1960s and 70s, high-tech applications at the beginning of the 21st century are driven by the materials science of thin films. Very much an interdisciplinary field, chemists, biochemists, materials scientists, physicists and engineers all have a common interest in thin films and their manifold uses and applications. Grain size, porosity, density, preferred orientation and other properties are important to know: whether thin films fulfill their intended function depends crucially on their structure and morphology once a chemical composition has been chosen. Although their backgrounds differ greatly, all the involved specialists a profound understanding of how structural properties may be determined in order to perform their respective tasks in search of new and modern materials, coatings and functions. The author undertakes this in-depth introduction to the field of thin film X-ray characterization in a clear and precise manner.


High-Resolution X-Ray Scattering

High-Resolution X-Ray Scattering

Author: Ullrich Pietsch

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 410

ISBN-13: 1475740506

DOWNLOAD EBOOK

During the last 20 years interest in high-resolution x-ray diffractometry and reflectivity has grown as a result of the development of the semiconductor industry and the increasing interest in material research of thin layers of magnetic, organic, and other materials. For example, optoelectronics requires a subsequent epitaxy of thin layers of different semiconductor materials. Here, the individuallayer thicknesses are scaled down to a few atomic layers in order to exploit quantum effects. For reasons of electronic and optical confinement, these thin layers are embedded within much thicker cladding layers or stacks of multilayers of slightly different chemical composition. It is evident that the interface quality of those quantum weHs is quite important for the function of devices. Thin metallic layers often show magnetic properties which do not ap pear for thick layers or in bulk material. The investigation of the mutual interaction of magnetic and non-magnetic layers leads to the discovery of colossal magnetoresistance, for example. This property is strongly related to the thickness and interface roughness of covered layers.


Book Synopsis High-Resolution X-Ray Scattering by : Ullrich Pietsch

Download or read book High-Resolution X-Ray Scattering written by Ullrich Pietsch and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the last 20 years interest in high-resolution x-ray diffractometry and reflectivity has grown as a result of the development of the semiconductor industry and the increasing interest in material research of thin layers of magnetic, organic, and other materials. For example, optoelectronics requires a subsequent epitaxy of thin layers of different semiconductor materials. Here, the individuallayer thicknesses are scaled down to a few atomic layers in order to exploit quantum effects. For reasons of electronic and optical confinement, these thin layers are embedded within much thicker cladding layers or stacks of multilayers of slightly different chemical composition. It is evident that the interface quality of those quantum weHs is quite important for the function of devices. Thin metallic layers often show magnetic properties which do not ap pear for thick layers or in bulk material. The investigation of the mutual interaction of magnetic and non-magnetic layers leads to the discovery of colossal magnetoresistance, for example. This property is strongly related to the thickness and interface roughness of covered layers.


X-Ray Scattering from Soft-Matter Thin Films

X-Ray Scattering from Soft-Matter Thin Films

Author: Metin Tolan

Publisher: Springer

Published: 2014-03-12

Total Pages: 198

ISBN-13: 9783662142172

DOWNLOAD EBOOK

The properties of soft-matter thin films (e.g. liquid films, polymer coatings, Langmuir-Blodgett multilayers) nowadays play an important role in materials science. They are also very exciting with respect to fundamental questions: In thin films, liquids and polymers may be considered as trapped in a quasi-two-dimensional geometry. This confined geometry is expected to alter the properties and structures of these materials considerably. This volume is dedicated to the scattering of x-rays by soft-matter interfaces. X-ray scattering under grazing angles is the only tool to investigating these materials on atomic and mesoscopic length scales. A review of the field is presented with many examples.


Book Synopsis X-Ray Scattering from Soft-Matter Thin Films by : Metin Tolan

Download or read book X-Ray Scattering from Soft-Matter Thin Films written by Metin Tolan and published by Springer. This book was released on 2014-03-12 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: The properties of soft-matter thin films (e.g. liquid films, polymer coatings, Langmuir-Blodgett multilayers) nowadays play an important role in materials science. They are also very exciting with respect to fundamental questions: In thin films, liquids and polymers may be considered as trapped in a quasi-two-dimensional geometry. This confined geometry is expected to alter the properties and structures of these materials considerably. This volume is dedicated to the scattering of x-rays by soft-matter interfaces. X-ray scattering under grazing angles is the only tool to investigating these materials on atomic and mesoscopic length scales. A review of the field is presented with many examples.


X-ray Scattering Investigations of Metallic Thin Films

X-ray Scattering Investigations of Metallic Thin Films

Author: Andrew P. Warren

Publisher:

Published: 2013

Total Pages: 128

ISBN-13:

DOWNLOAD EBOOK

Nanometric thin films are used widely throughout various industries and for various applications. Metallic thin films, specifically, are relied upon extensively in the microelectronics industry, among others. For example, alloy thin films are being investigated for CMOS applications, tungsten films find uses as contacts and diffusion barriers, and copper is used often as interconnect material. Appropriate metrology methods must therefore be used to characterize the physical properties of these films. X-ray scattering experiments are well suited for the investigation of nano-scaled systems, and are the focus of this doctoral dissertation. Emphasis is placed on (1) phase identification of polycrystalline thin films, (2) the evaluation of the grain size and microstrain of metallic thin films by line profile analysis, and (3) the study of morphological evolution in solid/solid interfaces. To illustrate the continued relevance of x-ray diffraction for phase identification of simple binary alloy systems, Pt-Ru thin films, spanning the compositional range from pure Pt to pure Ru were investigated. In these experiments, a meta-stable extension of the HCP phase is observed in which the steepest change in the electronic work function coincides with a rapid change in the c/a ratio of the HCP phase. For grain size and microstrain analysis, established line profile methods are discussed in terms of Cu and W thin film analysis. Grain sizes obtained by x-ray diffraction are compared to transmission electron microscopy based analyses. Significant discrepancies between x-ray and electron microscopy are attributed to sub-grain misorientations arising from dislocation core spreading at the film/substrate interface. A novel "residual" full width half max parameter is introduced for examining the contribution of strain to x-ray peak broadening. The residual width is subsequently used to propose an empirical method of line profile analysis for thin films on substrates. X-ray reflectivity was used to study the evolution of interface roughness with annealing for a series of Cu thin films that were encapsulated in both SiO2 and Ta/SiO2. While all samples follow similar growth dynamics, notable differences in the roughness evolution with high temperature ex-situ annealing were observed. The annealing resulted in a smoothing of only one interface for the SiO2 encapsulated films, while neither interface of the Ta/SiO2 encapsulated films evolved significantly. The fact that only the upper Cu/SiO2 interface evolves is attributed to mechanical pinning of the lower interface to the rigid substrate. The lack of evolution of the Cu/Ta/SiO2 interface is consistent with the lower diffusivity expected of Cu in a Cu/Ta interface as compared to that in a Cu/SiO2 interface. The smoothing of the upper Cu/SiO2 interface qualitatively follows that expected for capillarity driven surface diffusion but with notable quantitative deviation.


Book Synopsis X-ray Scattering Investigations of Metallic Thin Films by : Andrew P. Warren

Download or read book X-ray Scattering Investigations of Metallic Thin Films written by Andrew P. Warren and published by . This book was released on 2013 with total page 128 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanometric thin films are used widely throughout various industries and for various applications. Metallic thin films, specifically, are relied upon extensively in the microelectronics industry, among others. For example, alloy thin films are being investigated for CMOS applications, tungsten films find uses as contacts and diffusion barriers, and copper is used often as interconnect material. Appropriate metrology methods must therefore be used to characterize the physical properties of these films. X-ray scattering experiments are well suited for the investigation of nano-scaled systems, and are the focus of this doctoral dissertation. Emphasis is placed on (1) phase identification of polycrystalline thin films, (2) the evaluation of the grain size and microstrain of metallic thin films by line profile analysis, and (3) the study of morphological evolution in solid/solid interfaces. To illustrate the continued relevance of x-ray diffraction for phase identification of simple binary alloy systems, Pt-Ru thin films, spanning the compositional range from pure Pt to pure Ru were investigated. In these experiments, a meta-stable extension of the HCP phase is observed in which the steepest change in the electronic work function coincides with a rapid change in the c/a ratio of the HCP phase. For grain size and microstrain analysis, established line profile methods are discussed in terms of Cu and W thin film analysis. Grain sizes obtained by x-ray diffraction are compared to transmission electron microscopy based analyses. Significant discrepancies between x-ray and electron microscopy are attributed to sub-grain misorientations arising from dislocation core spreading at the film/substrate interface. A novel "residual" full width half max parameter is introduced for examining the contribution of strain to x-ray peak broadening. The residual width is subsequently used to propose an empirical method of line profile analysis for thin films on substrates. X-ray reflectivity was used to study the evolution of interface roughness with annealing for a series of Cu thin films that were encapsulated in both SiO2 and Ta/SiO2. While all samples follow similar growth dynamics, notable differences in the roughness evolution with high temperature ex-situ annealing were observed. The annealing resulted in a smoothing of only one interface for the SiO2 encapsulated films, while neither interface of the Ta/SiO2 encapsulated films evolved significantly. The fact that only the upper Cu/SiO2 interface evolves is attributed to mechanical pinning of the lower interface to the rigid substrate. The lack of evolution of the Cu/Ta/SiO2 interface is consistent with the lower diffusivity expected of Cu in a Cu/Ta interface as compared to that in a Cu/SiO2 interface. The smoothing of the upper Cu/SiO2 interface qualitatively follows that expected for capillarity driven surface diffusion but with notable quantitative deviation.


High-Resolution X-Ray Scattering from Thin Films and Multilayers

High-Resolution X-Ray Scattering from Thin Films and Multilayers

Author: Vaclav Holy

Publisher: Springer

Published: 2014-03-12

Total Pages: 258

ISBN-13: 9783662147429

DOWNLOAD EBOOK

This critical overview presents experimental methods for solving most frequent strucutral problems of mono-crystalline thin films and layered systems: thickness, crystalline state, strain distribution, interface quality and other properties. A unified theoretical approach based on kinematical and dynamical scattering theories describes the experimental methods. This book is a ready-to-hand reference for experimentalists who want to improve their knowledge on modern x-ray methods for thin-film analysis.


Book Synopsis High-Resolution X-Ray Scattering from Thin Films and Multilayers by : Vaclav Holy

Download or read book High-Resolution X-Ray Scattering from Thin Films and Multilayers written by Vaclav Holy and published by Springer. This book was released on 2014-03-12 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: This critical overview presents experimental methods for solving most frequent strucutral problems of mono-crystalline thin films and layered systems: thickness, crystalline state, strain distribution, interface quality and other properties. A unified theoretical approach based on kinematical and dynamical scattering theories describes the experimental methods. This book is a ready-to-hand reference for experimentalists who want to improve their knowledge on modern x-ray methods for thin-film analysis.


X-ray Scattering

X-ray Scattering

Author: Alicia Esther Ares

Publisher: BoD – Books on Demand

Published: 2017-01-25

Total Pages: 230

ISBN-13: 9535128876

DOWNLOAD EBOOK

X-ray scattering techniques are a family of nondestructive analytical techniques. Using these techniques, scientists obtain information about the crystal structure and chemical and physical properties of materials. Nowadays, different techniques are based on observing the scattered intensity of an X-ray beam hitting a sample as a function of incident and scattered angle, polarization, and wavelength. This book is intended to give overviews of the relevant X-ray scattering techniques, particularly about inelastic X-ray scattering, elastic scattering, grazing-incidence small-angle X-ray scattering, small-angle X-ray scattering, and high-resolution X-ray diffraction, and, finally, applications of X-ray spectroscopy to study different biological systems.


Book Synopsis X-ray Scattering by : Alicia Esther Ares

Download or read book X-ray Scattering written by Alicia Esther Ares and published by BoD – Books on Demand. This book was released on 2017-01-25 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: X-ray scattering techniques are a family of nondestructive analytical techniques. Using these techniques, scientists obtain information about the crystal structure and chemical and physical properties of materials. Nowadays, different techniques are based on observing the scattered intensity of an X-ray beam hitting a sample as a function of incident and scattered angle, polarization, and wavelength. This book is intended to give overviews of the relevant X-ray scattering techniques, particularly about inelastic X-ray scattering, elastic scattering, grazing-incidence small-angle X-ray scattering, small-angle X-ray scattering, and high-resolution X-ray diffraction, and, finally, applications of X-ray spectroscopy to study different biological systems.


Two-dimensional X-ray Diffraction

Two-dimensional X-ray Diffraction

Author: Bob B. He

Publisher: John Wiley & Sons

Published: 2018-06-26

Total Pages: 488

ISBN-13: 1119356105

DOWNLOAD EBOOK

An indispensable resource for researchers and students in materials science, chemistry, physics, and pharmaceuticals Written by one of the pioneers of 2D X-Ray Diffraction, this updated and expanded edition of the definitive text in the field provides comprehensive coverage of the fundamentals of that analytical method, as well as state-of-the art experimental methods and applications. Geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis, and combinatorial screening are all covered in detail. Numerous experimental examples in materials research, manufacture, and pharmaceuticals are provided throughout. Two-dimensional x-ray diffraction is the ideal, non-destructive analytical method for examining samples of all kinds including metals, polymers, ceramics, semiconductors, thin films, coatings, paints, biomaterials, composites, and more. Two-Dimensional X-Ray Diffraction, Second Edition is an up-to-date resource for understanding how the latest 2D detectors are integrated into diffractometers, how to get the best data using the 2D detector for diffraction, and how to interpret this data. All those desirous of setting up a 2D diffraction in their own laboratories will find the author’s coverage of the physical principles, projection geometry, and mathematical derivations extremely helpful. Features new contents in all chapters with most figures in full color to reveal more details in illustrations and diffraction patterns Covers the recent advances in detector technology and 2D data collection strategies that have led to dramatic increases in the use of two-dimensional detectors for x-ray diffraction Provides in-depth coverage of new innovations in x-ray sources, optics, system configurations, applications and data evaluation algorithms Contains new methods and experimental examples in stress, texture, crystal size, crystal orientation and thin film analysis Two-Dimensional X-Ray Diffraction, Second Edition is an important working resource for industrial and academic researchers and developers in materials science, chemistry, physics, pharmaceuticals, and all those who use x-ray diffraction as a characterization method. Users of all levels, instrument technicians and X-ray laboratory managers, as well as instrument developers, will want to have it on hand.


Book Synopsis Two-dimensional X-ray Diffraction by : Bob B. He

Download or read book Two-dimensional X-ray Diffraction written by Bob B. He and published by John Wiley & Sons. This book was released on 2018-06-26 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: An indispensable resource for researchers and students in materials science, chemistry, physics, and pharmaceuticals Written by one of the pioneers of 2D X-Ray Diffraction, this updated and expanded edition of the definitive text in the field provides comprehensive coverage of the fundamentals of that analytical method, as well as state-of-the art experimental methods and applications. Geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis, and combinatorial screening are all covered in detail. Numerous experimental examples in materials research, manufacture, and pharmaceuticals are provided throughout. Two-dimensional x-ray diffraction is the ideal, non-destructive analytical method for examining samples of all kinds including metals, polymers, ceramics, semiconductors, thin films, coatings, paints, biomaterials, composites, and more. Two-Dimensional X-Ray Diffraction, Second Edition is an up-to-date resource for understanding how the latest 2D detectors are integrated into diffractometers, how to get the best data using the 2D detector for diffraction, and how to interpret this data. All those desirous of setting up a 2D diffraction in their own laboratories will find the author’s coverage of the physical principles, projection geometry, and mathematical derivations extremely helpful. Features new contents in all chapters with most figures in full color to reveal more details in illustrations and diffraction patterns Covers the recent advances in detector technology and 2D data collection strategies that have led to dramatic increases in the use of two-dimensional detectors for x-ray diffraction Provides in-depth coverage of new innovations in x-ray sources, optics, system configurations, applications and data evaluation algorithms Contains new methods and experimental examples in stress, texture, crystal size, crystal orientation and thin film analysis Two-Dimensional X-Ray Diffraction, Second Edition is an important working resource for industrial and academic researchers and developers in materials science, chemistry, physics, pharmaceuticals, and all those who use x-ray diffraction as a characterization method. Users of all levels, instrument technicians and X-ray laboratory managers, as well as instrument developers, will want to have it on hand.


X-Ray Diffraction by Polycrystalline Materials

X-Ray Diffraction by Polycrystalline Materials

Author: René Guinebretière

Publisher: John Wiley & Sons

Published: 2013-03-01

Total Pages: 290

ISBN-13: 1118613953

DOWNLOAD EBOOK

This book presents a physical approach to the diffraction phenomenon and its applications in materials science. An historical background to the discovery of X-ray diffraction is first outlined. Next, Part 1 gives a description of the physical phenomenon of X-ray diffraction on perfect and imperfect crystals. Part 2 then provides a detailed analysis of the instruments used for the characterization of powdered materials or thin films. The description of the processing of measured signals and their results is also covered, as are recent developments relating to quantitative microstructural analysis of powders or epitaxial thin films on the basis of X-ray diffraction. Given the comprehensive coverage offered by this title, anyone involved in the field of X-ray diffraction and its applications will find this of great use.


Book Synopsis X-Ray Diffraction by Polycrystalline Materials by : René Guinebretière

Download or read book X-Ray Diffraction by Polycrystalline Materials written by René Guinebretière and published by John Wiley & Sons. This book was released on 2013-03-01 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a physical approach to the diffraction phenomenon and its applications in materials science. An historical background to the discovery of X-ray diffraction is first outlined. Next, Part 1 gives a description of the physical phenomenon of X-ray diffraction on perfect and imperfect crystals. Part 2 then provides a detailed analysis of the instruments used for the characterization of powdered materials or thin films. The description of the processing of measured signals and their results is also covered, as are recent developments relating to quantitative microstructural analysis of powders or epitaxial thin films on the basis of X-ray diffraction. Given the comprehensive coverage offered by this title, anyone involved in the field of X-ray diffraction and its applications will find this of great use.


Anomalous X-Ray Scattering for Materials Characterization

Anomalous X-Ray Scattering for Materials Characterization

Author: Yoshio Waseda

Publisher: Springer

Published: 2003-07-01

Total Pages: 224

ISBN-13: 354046008X

DOWNLOAD EBOOK

The production of multi layered thin films with sufficient reliability is a key technology for device fabrication in micro electronics. In the Co/Cu type multi layers, for example, magnetoresistance has been found as large as 80 % at 4. 2 K and 50 % at room temperature. In addition to such gigantic mag netoresistance, these multi layers indicate anti ferromagnetic and ferromag netic oscillation behavior with an increase in the thickness of the layers of the non magnetic component. These interesting properties of the new synthetic flmctional materials are attributed to their periodic and interracial structures at a microscopic level, although the origin of such peculiar features is not fully understood. Information on the surface structure or the number density of atoms in the near surface region may provide better insight. Amorphous alloys, frequently referred to as metallic glasses, are produced by rapid quenching from the melt. The second generation amorphous alloys, called "bulk amorphous alloys", have been discovered in some Pd based and Zr based alloy systems, with a super cooled liquid region at more than 120 K. In these alloy systems, one can obtain a sample thickness of several centime ters. Growing scientific and technological curiosity about the new amorphous alloys has focused on the fundamental factors, such as the atomic scale struc ture, which are responsible for the thermal stability with certain chemical compositions.


Book Synopsis Anomalous X-Ray Scattering for Materials Characterization by : Yoshio Waseda

Download or read book Anomalous X-Ray Scattering for Materials Characterization written by Yoshio Waseda and published by Springer. This book was released on 2003-07-01 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: The production of multi layered thin films with sufficient reliability is a key technology for device fabrication in micro electronics. In the Co/Cu type multi layers, for example, magnetoresistance has been found as large as 80 % at 4. 2 K and 50 % at room temperature. In addition to such gigantic mag netoresistance, these multi layers indicate anti ferromagnetic and ferromag netic oscillation behavior with an increase in the thickness of the layers of the non magnetic component. These interesting properties of the new synthetic flmctional materials are attributed to their periodic and interracial structures at a microscopic level, although the origin of such peculiar features is not fully understood. Information on the surface structure or the number density of atoms in the near surface region may provide better insight. Amorphous alloys, frequently referred to as metallic glasses, are produced by rapid quenching from the melt. The second generation amorphous alloys, called "bulk amorphous alloys", have been discovered in some Pd based and Zr based alloy systems, with a super cooled liquid region at more than 120 K. In these alloy systems, one can obtain a sample thickness of several centime ters. Growing scientific and technological curiosity about the new amorphous alloys has focused on the fundamental factors, such as the atomic scale struc ture, which are responsible for the thermal stability with certain chemical compositions.