Time Dependent Problems and Difference Methods

Time Dependent Problems and Difference Methods

Author: Bertil Gustafsson

Publisher: John Wiley & Sons

Published: 1995

Total Pages: 666

ISBN-13: 9780471507345

DOWNLOAD EBOOK

Time Dependent Problems and Difference Methods addresses these various industrial considerations in a pragmatic and detailed manner, giving special attention to time dependent problems in its coverage of the derivation and analysis of numerical methods for computational approximations to Partial Differential Equations (PDEs).


Book Synopsis Time Dependent Problems and Difference Methods by : Bertil Gustafsson

Download or read book Time Dependent Problems and Difference Methods written by Bertil Gustafsson and published by John Wiley & Sons. This book was released on 1995 with total page 666 pages. Available in PDF, EPUB and Kindle. Book excerpt: Time Dependent Problems and Difference Methods addresses these various industrial considerations in a pragmatic and detailed manner, giving special attention to time dependent problems in its coverage of the derivation and analysis of numerical methods for computational approximations to Partial Differential Equations (PDEs).


Time-Dependent Problems and Difference Methods

Time-Dependent Problems and Difference Methods

Author: Bertil Gustafsson

Publisher: John Wiley & Sons

Published: 2013-07-18

Total Pages: 464

ISBN-13: 1118548523

DOWNLOAD EBOOK

Praise for the First Edition ". . . fills a considerable gap in the numerical analysis literature by providing a self-contained treatment . . . this is an important work written in a clear style . . . warmly recommended to any graduate student or researcher in the field of the numerical solution of partial differential equations." —SIAM Review Time-Dependent Problems and Difference Methods, Second Edition continues to provide guidance for the analysis of difference methods for computing approximate solutions to partial differential equations for time-dependent problems. The book treats differential equations and difference methods with a parallel development, thus achieving a more useful analysis of numerical methods. The Second Edition presents hyperbolic equations in great detail as well as new coverage on second-order systems of wave equations including acoustic waves, elastic waves, and Einstein equations. Compared to first-order hyperbolic systems, initial-boundary value problems for such systems contain new properties that must be taken into account when analyzing stability. Featuring the latest material in partial differential equations with new theorems, examples, and illustrations,Time-Dependent Problems and Difference Methods, Second Edition also includes: High order methods on staggered grids Extended treatment of Summation By Parts operators and their application to second-order derivatives Simplified presentation of certain parts and proofs Time-Dependent Problems and Difference Methods, Second Edition is an ideal reference for physical scientists, engineers, numerical analysts, and mathematical modelers who use numerical experiments to test designs and to predict and investigate physical phenomena. The book is also excellent for graduate-level courses in applied mathematics and scientific computations.


Book Synopsis Time-Dependent Problems and Difference Methods by : Bertil Gustafsson

Download or read book Time-Dependent Problems and Difference Methods written by Bertil Gustafsson and published by John Wiley & Sons. This book was released on 2013-07-18 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the First Edition ". . . fills a considerable gap in the numerical analysis literature by providing a self-contained treatment . . . this is an important work written in a clear style . . . warmly recommended to any graduate student or researcher in the field of the numerical solution of partial differential equations." —SIAM Review Time-Dependent Problems and Difference Methods, Second Edition continues to provide guidance for the analysis of difference methods for computing approximate solutions to partial differential equations for time-dependent problems. The book treats differential equations and difference methods with a parallel development, thus achieving a more useful analysis of numerical methods. The Second Edition presents hyperbolic equations in great detail as well as new coverage on second-order systems of wave equations including acoustic waves, elastic waves, and Einstein equations. Compared to first-order hyperbolic systems, initial-boundary value problems for such systems contain new properties that must be taken into account when analyzing stability. Featuring the latest material in partial differential equations with new theorems, examples, and illustrations,Time-Dependent Problems and Difference Methods, Second Edition also includes: High order methods on staggered grids Extended treatment of Summation By Parts operators and their application to second-order derivatives Simplified presentation of certain parts and proofs Time-Dependent Problems and Difference Methods, Second Edition is an ideal reference for physical scientists, engineers, numerical analysts, and mathematical modelers who use numerical experiments to test designs and to predict and investigate physical phenomena. The book is also excellent for graduate-level courses in applied mathematics and scientific computations.


Finite Difference Methods for Ordinary and Partial Differential Equations

Finite Difference Methods for Ordinary and Partial Differential Equations

Author: Randall J. LeVeque

Publisher: SIAM

Published: 2007-01-01

Total Pages: 356

ISBN-13: 9780898717839

DOWNLOAD EBOOK

This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.


Book Synopsis Finite Difference Methods for Ordinary and Partial Differential Equations by : Randall J. LeVeque

Download or read book Finite Difference Methods for Ordinary and Partial Differential Equations written by Randall J. LeVeque and published by SIAM. This book was released on 2007-01-01 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.


High Order Difference Methods for Time Dependent PDE

High Order Difference Methods for Time Dependent PDE

Author: Bertil Gustafsson

Publisher: Springer Science & Business Media

Published: 2007-12-06

Total Pages: 343

ISBN-13: 3540749934

DOWNLOAD EBOOK

This book covers high order finite difference methods for time dependent PDE. It gives an overview of the basic theory and construction principles by using model examples. The book also contains a general presentation of the techniques and results for well-posedness and stability, with inclusion of the three fundamental methods of analysis both for PDE in its original and discretized form: the Fourier transform, the eneregy method and the Laplace transform.


Book Synopsis High Order Difference Methods for Time Dependent PDE by : Bertil Gustafsson

Download or read book High Order Difference Methods for Time Dependent PDE written by Bertil Gustafsson and published by Springer Science & Business Media. This book was released on 2007-12-06 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers high order finite difference methods for time dependent PDE. It gives an overview of the basic theory and construction principles by using model examples. The book also contains a general presentation of the techniques and results for well-posedness and stability, with inclusion of the three fundamental methods of analysis both for PDE in its original and discretized form: the Fourier transform, the eneregy method and the Laplace transform.


Time-dependent Partial Differential Equations and Their Numerical Solution

Time-dependent Partial Differential Equations and Their Numerical Solution

Author: Heinz-Otto Kreiss

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 87

ISBN-13: 3034882297

DOWNLOAD EBOOK

This book studies time-dependent partial differential equations and their numerical solution, developing the analytic and the numerical theory in parallel, and placing special emphasis on the discretization of boundary conditions. The theoretical results are then applied to Newtonian and non-Newtonian flows, two-phase flows and geophysical problems. This book will be a useful introduction to the field for applied mathematicians and graduate students.


Book Synopsis Time-dependent Partial Differential Equations and Their Numerical Solution by : Heinz-Otto Kreiss

Download or read book Time-dependent Partial Differential Equations and Their Numerical Solution written by Heinz-Otto Kreiss and published by Birkhäuser. This book was released on 2012-12-06 with total page 87 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book studies time-dependent partial differential equations and their numerical solution, developing the analytic and the numerical theory in parallel, and placing special emphasis on the discretization of boundary conditions. The theoretical results are then applied to Newtonian and non-Newtonian flows, two-phase flows and geophysical problems. This book will be a useful introduction to the field for applied mathematicians and graduate students.


Partial Differential Equations with Numerical Methods

Partial Differential Equations with Numerical Methods

Author: Stig Larsson

Publisher: Springer Science & Business Media

Published: 2008-12-05

Total Pages: 263

ISBN-13: 3540887059

DOWNLOAD EBOOK

The main theme is the integration of the theory of linear PDE and the theory of finite difference and finite element methods. For each type of PDE, elliptic, parabolic, and hyperbolic, the text contains one chapter on the mathematical theory of the differential equation, followed by one chapter on finite difference methods and one on finite element methods. The chapters on elliptic equations are preceded by a chapter on the two-point boundary value problem for ordinary differential equations. Similarly, the chapters on time-dependent problems are preceded by a chapter on the initial-value problem for ordinary differential equations. There is also one chapter on the elliptic eigenvalue problem and eigenfunction expansion. The presentation does not presume a deep knowledge of mathematical and functional analysis. The required background on linear functional analysis and Sobolev spaces is reviewed in an appendix. The book is suitable for advanced undergraduate and beginning graduate students of applied mathematics and engineering.


Book Synopsis Partial Differential Equations with Numerical Methods by : Stig Larsson

Download or read book Partial Differential Equations with Numerical Methods written by Stig Larsson and published by Springer Science & Business Media. This book was released on 2008-12-05 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main theme is the integration of the theory of linear PDE and the theory of finite difference and finite element methods. For each type of PDE, elliptic, parabolic, and hyperbolic, the text contains one chapter on the mathematical theory of the differential equation, followed by one chapter on finite difference methods and one on finite element methods. The chapters on elliptic equations are preceded by a chapter on the two-point boundary value problem for ordinary differential equations. Similarly, the chapters on time-dependent problems are preceded by a chapter on the initial-value problem for ordinary differential equations. There is also one chapter on the elliptic eigenvalue problem and eigenfunction expansion. The presentation does not presume a deep knowledge of mathematical and functional analysis. The required background on linear functional analysis and Sobolev spaces is reviewed in an appendix. The book is suitable for advanced undergraduate and beginning graduate students of applied mathematics and engineering.


Introduction to Numerical Methods for Time Dependent Differential Equations

Introduction to Numerical Methods for Time Dependent Differential Equations

Author: Heinz-Otto Kreiss

Publisher: John Wiley & Sons

Published: 2014-04-24

Total Pages: 161

ISBN-13: 1118838912

DOWNLOAD EBOOK

Introduces both the fundamentals of time dependent differential equations and their numerical solutions Introduction to Numerical Methods for Time Dependent Differential Equations delves into the underlying mathematical theory needed to solve time dependent differential equations numerically. Written as a self-contained introduction, the book is divided into two parts to emphasize both ordinary differential equations (ODEs) and partial differential equations (PDEs). Beginning with ODEs and their approximations, the authors provide a crucial presentation of fundamental notions, such as the theory of scalar equations, finite difference approximations, and the Explicit Euler method. Next, a discussion on higher order approximations, implicit methods, multistep methods, Fourier interpolation, PDEs in one space dimension as well as their related systems is provided. Introduction to Numerical Methods for Time Dependent Differential Equations features: A step-by-step discussion of the procedures needed to prove the stability of difference approximations Multiple exercises throughout with select answers, providing readers with a practical guide to understanding the approximations of differential equations A simplified approach in a one space dimension Analytical theory for difference approximations that is particularly useful to clarify procedures Introduction to Numerical Methods for Time Dependent Differential Equations is an excellent textbook for upper-undergraduate courses in applied mathematics, engineering, and physics as well as a useful reference for physical scientists, engineers, numerical analysts, and mathematical modelers who use numerical experiments to test designs or predict and investigate phenomena from many disciplines.


Book Synopsis Introduction to Numerical Methods for Time Dependent Differential Equations by : Heinz-Otto Kreiss

Download or read book Introduction to Numerical Methods for Time Dependent Differential Equations written by Heinz-Otto Kreiss and published by John Wiley & Sons. This book was released on 2014-04-24 with total page 161 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces both the fundamentals of time dependent differential equations and their numerical solutions Introduction to Numerical Methods for Time Dependent Differential Equations delves into the underlying mathematical theory needed to solve time dependent differential equations numerically. Written as a self-contained introduction, the book is divided into two parts to emphasize both ordinary differential equations (ODEs) and partial differential equations (PDEs). Beginning with ODEs and their approximations, the authors provide a crucial presentation of fundamental notions, such as the theory of scalar equations, finite difference approximations, and the Explicit Euler method. Next, a discussion on higher order approximations, implicit methods, multistep methods, Fourier interpolation, PDEs in one space dimension as well as their related systems is provided. Introduction to Numerical Methods for Time Dependent Differential Equations features: A step-by-step discussion of the procedures needed to prove the stability of difference approximations Multiple exercises throughout with select answers, providing readers with a practical guide to understanding the approximations of differential equations A simplified approach in a one space dimension Analytical theory for difference approximations that is particularly useful to clarify procedures Introduction to Numerical Methods for Time Dependent Differential Equations is an excellent textbook for upper-undergraduate courses in applied mathematics, engineering, and physics as well as a useful reference for physical scientists, engineers, numerical analysts, and mathematical modelers who use numerical experiments to test designs or predict and investigate phenomena from many disciplines.


The Finite Difference Method in Partial Differential Equations

The Finite Difference Method in Partial Differential Equations

Author: A. R. Mitchell

Publisher:

Published: 1980-03-10

Total Pages: 296

ISBN-13:

DOWNLOAD EBOOK

Extensively revised edition of Computational Methods in Partial Differential Equations. A more general approach has been adopted for the splitting of operators for parabolic and hyperbolic equations to include Richtmyer and Strang type splittings in addition to alternating direction implicit and locally one dimensional methods. A description of the now standard factorization and SOR/ADI iterative techniques for solving elliptic difference equations has been supplemented with an account or preconditioned conjugate gradient methods which are currently gaining in popularity. Prominence is also given to the Galerkin method using different test and trial functions as a means of constructing difference approximations to both elliptic and time dependent problems. The applications of finite difference methods have been revised and contain examples involving the treatment of singularities in elliptic equations, free and moving boundary problems, as well as modern developments in computational fluid dynamics. Emphasis throughout is on clear exposition of the construction and solution of difference equations. Material is reinforced with theoretical results when appropriate.


Book Synopsis The Finite Difference Method in Partial Differential Equations by : A. R. Mitchell

Download or read book The Finite Difference Method in Partial Differential Equations written by A. R. Mitchell and published by . This book was released on 1980-03-10 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Extensively revised edition of Computational Methods in Partial Differential Equations. A more general approach has been adopted for the splitting of operators for parabolic and hyperbolic equations to include Richtmyer and Strang type splittings in addition to alternating direction implicit and locally one dimensional methods. A description of the now standard factorization and SOR/ADI iterative techniques for solving elliptic difference equations has been supplemented with an account or preconditioned conjugate gradient methods which are currently gaining in popularity. Prominence is also given to the Galerkin method using different test and trial functions as a means of constructing difference approximations to both elliptic and time dependent problems. The applications of finite difference methods have been revised and contain examples involving the treatment of singularities in elliptic equations, free and moving boundary problems, as well as modern developments in computational fluid dynamics. Emphasis throughout is on clear exposition of the construction and solution of difference equations. Material is reinforced with theoretical results when appropriate.


Numerical Methods for Solving Time-dependent Problems for Partial Differential Equations

Numerical Methods for Solving Time-dependent Problems for Partial Differential Equations

Author: Heinz-Otto Kreiss

Publisher:

Published: 1978

Total Pages: 126

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Numerical Methods for Solving Time-dependent Problems for Partial Differential Equations by : Heinz-Otto Kreiss

Download or read book Numerical Methods for Solving Time-dependent Problems for Partial Differential Equations written by Heinz-Otto Kreiss and published by . This book was released on 1978 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Numerical Solution of Partial Differential Equations by the Finite Element Method

Numerical Solution of Partial Differential Equations by the Finite Element Method

Author: Claes Johnson

Publisher: Courier Corporation

Published: 2012-05-23

Total Pages: 290

ISBN-13: 0486131599

DOWNLOAD EBOOK

An accessible introduction to the finite element method for solving numeric problems, this volume offers the keys to an important technique in computational mathematics. Suitable for advanced undergraduate and graduate courses, it outlines clear connections with applications and considers numerous examples from a variety of science- and engineering-related specialties.This text encompasses all varieties of the basic linear partial differential equations, including elliptic, parabolic and hyperbolic problems, as well as stationary and time-dependent problems. Additional topics include finite element methods for integral equations, an introduction to nonlinear problems, and considerations of unique developments of finite element techniques related to parabolic problems, including methods for automatic time step control. The relevant mathematics are expressed in non-technical terms whenever possible, in the interests of keeping the treatment accessible to a majority of students.


Book Synopsis Numerical Solution of Partial Differential Equations by the Finite Element Method by : Claes Johnson

Download or read book Numerical Solution of Partial Differential Equations by the Finite Element Method written by Claes Johnson and published by Courier Corporation. This book was released on 2012-05-23 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible introduction to the finite element method for solving numeric problems, this volume offers the keys to an important technique in computational mathematics. Suitable for advanced undergraduate and graduate courses, it outlines clear connections with applications and considers numerous examples from a variety of science- and engineering-related specialties.This text encompasses all varieties of the basic linear partial differential equations, including elliptic, parabolic and hyperbolic problems, as well as stationary and time-dependent problems. Additional topics include finite element methods for integral equations, an introduction to nonlinear problems, and considerations of unique developments of finite element techniques related to parabolic problems, including methods for automatic time step control. The relevant mathematics are expressed in non-technical terms whenever possible, in the interests of keeping the treatment accessible to a majority of students.