Topics in Electron Diffraction and Microscopy of Materials

Topics in Electron Diffraction and Microscopy of Materials

Author: Peter. B Hirsch

Publisher: CRC Press

Published: 1999-01-01

Total Pages: 240

ISBN-13: 9780750305389

DOWNLOAD EBOOK

Topics in Electron Diffraction and Microscopy of Materials celebrates the retirement of Professor Michael Whelan from the University of Oxford. Professor Whelan taught many of today's heads of department and was a pioneer in the development and use of electron microscopy. His collaborators and colleagues, each one of whom has made important advances in the use of microscopy to study materials, have contributed to this cohesive work. The book provides a useful overview of current applications for selected electron microscope techniques that have become important and widespread in their use for furthering our understanding of how materials behave. Linked through the dynamical theory of electron diffraction and inelastic scattering, the topics discussed include the history and impact of electron microscopy in materials science, weak-beam techniques for problem solving, defect structures and dislocation interactions, using beam diffraction patterns to look at defects in structures, obtaining chemical identification at atomic resolution, theoretical developments in backscattering channeling patterns, new ways to look at atomic bonds, using numerical simulations to look at electronic structure of crystals, RHEED observations for MBE growth, and atomic level imaging applications.


Book Synopsis Topics in Electron Diffraction and Microscopy of Materials by : Peter. B Hirsch

Download or read book Topics in Electron Diffraction and Microscopy of Materials written by Peter. B Hirsch and published by CRC Press. This book was released on 1999-01-01 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topics in Electron Diffraction and Microscopy of Materials celebrates the retirement of Professor Michael Whelan from the University of Oxford. Professor Whelan taught many of today's heads of department and was a pioneer in the development and use of electron microscopy. His collaborators and colleagues, each one of whom has made important advances in the use of microscopy to study materials, have contributed to this cohesive work. The book provides a useful overview of current applications for selected electron microscope techniques that have become important and widespread in their use for furthering our understanding of how materials behave. Linked through the dynamical theory of electron diffraction and inelastic scattering, the topics discussed include the history and impact of electron microscopy in materials science, weak-beam techniques for problem solving, defect structures and dislocation interactions, using beam diffraction patterns to look at defects in structures, obtaining chemical identification at atomic resolution, theoretical developments in backscattering channeling patterns, new ways to look at atomic bonds, using numerical simulations to look at electronic structure of crystals, RHEED observations for MBE growth, and atomic level imaging applications.


Transmission Electron Microscopy

Transmission Electron Microscopy

Author: C. Barry Carter

Publisher: Springer

Published: 2016-08-24

Total Pages: 543

ISBN-13: 3319266519

DOWNLOAD EBOOK

This text is a companion volume to Transmission Electron Microscopy: A Textbook for Materials Science by Williams and Carter. The aim is to extend the discussion of certain topics that are either rapidly changing at this time or that would benefit from more detailed discussion than space allowed in the primary text. World-renowned researchers have contributed chapters in their area of expertise, and the editors have carefully prepared these chapters to provide a uniform tone and treatment for this exciting material. The book features an unparalleled collection of color figures showcasing the quality and variety of chemical data that can be obtained from today’s instruments, as well as key pitfalls to avoid. As with the previous TEM text, each chapter contains two sets of questions, one for self assessment and a second more suitable for homework assignments. Throughout the book, the style follows that of Williams & Carter even when the subject matter becomes challenging—the aim is always to make the topic understandable by first-year graduate students and others who are working in the field of Materials Science Topics covered include sources, in-situ experiments, electron diffraction, Digital Micrograph, waves and holography, focal-series reconstruction and direct methods, STEM and tomography, energy-filtered TEM (EFTEM) imaging, and spectrum imaging. The range and depth of material makes this companion volume essential reading for the budding microscopist and a key reference for practicing researchers using these and related techniques.


Book Synopsis Transmission Electron Microscopy by : C. Barry Carter

Download or read book Transmission Electron Microscopy written by C. Barry Carter and published by Springer. This book was released on 2016-08-24 with total page 543 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is a companion volume to Transmission Electron Microscopy: A Textbook for Materials Science by Williams and Carter. The aim is to extend the discussion of certain topics that are either rapidly changing at this time or that would benefit from more detailed discussion than space allowed in the primary text. World-renowned researchers have contributed chapters in their area of expertise, and the editors have carefully prepared these chapters to provide a uniform tone and treatment for this exciting material. The book features an unparalleled collection of color figures showcasing the quality and variety of chemical data that can be obtained from today’s instruments, as well as key pitfalls to avoid. As with the previous TEM text, each chapter contains two sets of questions, one for self assessment and a second more suitable for homework assignments. Throughout the book, the style follows that of Williams & Carter even when the subject matter becomes challenging—the aim is always to make the topic understandable by first-year graduate students and others who are working in the field of Materials Science Topics covered include sources, in-situ experiments, electron diffraction, Digital Micrograph, waves and holography, focal-series reconstruction and direct methods, STEM and tomography, energy-filtered TEM (EFTEM) imaging, and spectrum imaging. The range and depth of material makes this companion volume essential reading for the budding microscopist and a key reference for practicing researchers using these and related techniques.


Electron Microscopy In Material Science

Electron Microscopy In Material Science

Author: U Valdre

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 785

ISBN-13: 0323142567

DOWNLOAD EBOOK

Electron Microscopy in Material Science covers the proceedings of the International School of Electron Microscopy held in Erice, Itsaly, in 1970. The said conference is intended to the developments of electron optics and electron microscopy and its applications in material science. The book is divided into four parts. Part I discusses the impact of electron microscopy in the science of materials. Part II covers topics such as electron optics and instrumentation; geometric electron optics and its problems; and special electron microscope specimen stages. Part III explains the theory of electron diffraction image contrast and then elaborates on related areas such as the application of electron diffraction and of electron microscopy to radiation; computing methods; and problems in electron microscopy. Part IV includes topics such as the transfer of image information in the electron microscope; phase contrast microscopy; and the magnetic phase contrast. The text is recommended for electron microscopists who are interested in the application of their field in material science, as well as for experts in the field of material science and would like to know about the importance of electron microscopy.


Book Synopsis Electron Microscopy In Material Science by : U Valdre

Download or read book Electron Microscopy In Material Science written by U Valdre and published by Elsevier. This book was released on 2012-12-02 with total page 785 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electron Microscopy in Material Science covers the proceedings of the International School of Electron Microscopy held in Erice, Itsaly, in 1970. The said conference is intended to the developments of electron optics and electron microscopy and its applications in material science. The book is divided into four parts. Part I discusses the impact of electron microscopy in the science of materials. Part II covers topics such as electron optics and instrumentation; geometric electron optics and its problems; and special electron microscope specimen stages. Part III explains the theory of electron diffraction image contrast and then elaborates on related areas such as the application of electron diffraction and of electron microscopy to radiation; computing methods; and problems in electron microscopy. Part IV includes topics such as the transfer of image information in the electron microscope; phase contrast microscopy; and the magnetic phase contrast. The text is recommended for electron microscopists who are interested in the application of their field in material science, as well as for experts in the field of material science and would like to know about the importance of electron microscopy.


Transmission Electron Microscopy and Diffractometry of Materials

Transmission Electron Microscopy and Diffractometry of Materials

Author: Brent Fultz

Publisher: Springer Science & Business Media

Published: 2012-10-14

Total Pages: 775

ISBN-13: 3642297609

DOWNLOAD EBOOK

This book explains concepts of transmission electron microscopy (TEM) and x-ray diffractometry (XRD) that are important for the characterization of materials. The fourth edition adds important new techniques of TEM such as electron tomography, nanobeam diffraction, and geometric phase analysis. A new chapter on neutron scattering completes the trio of x-ray, electron and neutron diffraction. All chapters were updated and revised for clarity. The book explains the fundamentals of how waves and wavefunctions interact with atoms in solids, and the similarities and differences of using x-rays, electrons, or neutrons for diffraction measurements. Diffraction effects of crystalline order, defects, and disorder in materials are explained in detail. Both practical and theoretical issues are covered. The book can be used in an introductory-level or advanced-level course, since sections are identified by difficulty. Each chapter includes a set of problems to illustrate principles, and the extensive Appendix includes laboratory exercises.


Book Synopsis Transmission Electron Microscopy and Diffractometry of Materials by : Brent Fultz

Download or read book Transmission Electron Microscopy and Diffractometry of Materials written by Brent Fultz and published by Springer Science & Business Media. This book was released on 2012-10-14 with total page 775 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explains concepts of transmission electron microscopy (TEM) and x-ray diffractometry (XRD) that are important for the characterization of materials. The fourth edition adds important new techniques of TEM such as electron tomography, nanobeam diffraction, and geometric phase analysis. A new chapter on neutron scattering completes the trio of x-ray, electron and neutron diffraction. All chapters were updated and revised for clarity. The book explains the fundamentals of how waves and wavefunctions interact with atoms in solids, and the similarities and differences of using x-rays, electrons, or neutrons for diffraction measurements. Diffraction effects of crystalline order, defects, and disorder in materials are explained in detail. Both practical and theoretical issues are covered. The book can be used in an introductory-level or advanced-level course, since sections are identified by difficulty. Each chapter includes a set of problems to illustrate principles, and the extensive Appendix includes laboratory exercises.


Transmission Electron Microscopy and Diffractometry of Materials

Transmission Electron Microscopy and Diffractometry of Materials

Author: Brent Fultz

Publisher: Springer Science & Business Media

Published: 2013-11-21

Total Pages: 759

ISBN-13: 3662045168

DOWNLOAD EBOOK

Aims and Scope of the Book This textbook was written for advanced un dergraduate students and beginning graduate students with backgrounds in physical science. Its goal is to acquaint them, as quickly as possible, with the central concepts and some details of transmission electron microscopy (TEM) and x-ray diffractometry (XRD) that are important for the characterization of materials. The topics in this book are developed to a level appropriate for most modern materials characterization research using TEM and XRD. There are, of course, many specialties that have attained a higher level of sophistication than presented here. The content of this book has been chosen in part to provide the background needed for a transition to these research specialties, or to other techniques such as neutron diffractometry. Although the book includes many practical details and examples, it does not cover some topics important for laboratory work. Perhaps the most obvious is the omission of specimen preparation methods for TEM. Beneath the details of principle and practice lies a larger goal of unifying the concepts common to both TEM and XRD. Coherence and wave interfer ence are conceptually similar for both x-ray waves and electron wavefunctions.


Book Synopsis Transmission Electron Microscopy and Diffractometry of Materials by : Brent Fultz

Download or read book Transmission Electron Microscopy and Diffractometry of Materials written by Brent Fultz and published by Springer Science & Business Media. This book was released on 2013-11-21 with total page 759 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aims and Scope of the Book This textbook was written for advanced un dergraduate students and beginning graduate students with backgrounds in physical science. Its goal is to acquaint them, as quickly as possible, with the central concepts and some details of transmission electron microscopy (TEM) and x-ray diffractometry (XRD) that are important for the characterization of materials. The topics in this book are developed to a level appropriate for most modern materials characterization research using TEM and XRD. There are, of course, many specialties that have attained a higher level of sophistication than presented here. The content of this book has been chosen in part to provide the background needed for a transition to these research specialties, or to other techniques such as neutron diffractometry. Although the book includes many practical details and examples, it does not cover some topics important for laboratory work. Perhaps the most obvious is the omission of specimen preparation methods for TEM. Beneath the details of principle and practice lies a larger goal of unifying the concepts common to both TEM and XRD. Coherence and wave interfer ence are conceptually similar for both x-ray waves and electron wavefunctions.


Electron Diffraction in the Electron Microscope

Electron Diffraction in the Electron Microscope

Author: Jeffrey William Edington

Publisher: Palgrave

Published: 1975

Total Pages: 122

ISBN-13: 9780333182925

DOWNLOAD EBOOK


Book Synopsis Electron Diffraction in the Electron Microscope by : Jeffrey William Edington

Download or read book Electron Diffraction in the Electron Microscope written by Jeffrey William Edington and published by Palgrave. This book was released on 1975 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Elastic and Inelastic Scattering in Electron Diffraction and Imaging

Elastic and Inelastic Scattering in Electron Diffraction and Imaging

Author: Zhong-lin Wang

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 461

ISBN-13: 1489915796

DOWNLOAD EBOOK

Elastic and inelastic scattering in transmission electron microscopy (TEM) are important research subjects. For a long time, I have wished to systematically summarize various dynamic theories associated with quantitative electron micros copy and their applications in simulations of electron diffraction patterns and images. This wish now becomes reality. The aim of this book is to explore the physics in electron diffraction and imaging and related applications for materials characterizations. Particular emphasis is placed on diffraction and imaging of inelastically scattered electrons, which, I believe, have not been discussed exten sively in existing books. This book assumes that readers have some preknowledge of electron microscopy, electron diffraction, and quantum mechanics. I anticipate that this book will be a guide to approaching phenomena observed in electron microscopy from the prospects of diffraction physics. The SI units are employed throughout the book except for angstrom (A), which is used occasionally for convenience. To reduce the number of symbols used, the Fourier transform of a real-space function P'(r), for example, is denoted by the same symbol P'(u) in reciprocal space except that r is replaced by u. Upper and lower limits of an integral in the book are (-co, co) unless otherwise specified. The (-co, co) integral limits are usually omitted in a mathematical expression for simplification. I very much appreciate opportunity of working with Drs. J. M. Cowley and J. C. H. Spence (Arizona State University), J.


Book Synopsis Elastic and Inelastic Scattering in Electron Diffraction and Imaging by : Zhong-lin Wang

Download or read book Elastic and Inelastic Scattering in Electron Diffraction and Imaging written by Zhong-lin Wang and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 461 pages. Available in PDF, EPUB and Kindle. Book excerpt: Elastic and inelastic scattering in transmission electron microscopy (TEM) are important research subjects. For a long time, I have wished to systematically summarize various dynamic theories associated with quantitative electron micros copy and their applications in simulations of electron diffraction patterns and images. This wish now becomes reality. The aim of this book is to explore the physics in electron diffraction and imaging and related applications for materials characterizations. Particular emphasis is placed on diffraction and imaging of inelastically scattered electrons, which, I believe, have not been discussed exten sively in existing books. This book assumes that readers have some preknowledge of electron microscopy, electron diffraction, and quantum mechanics. I anticipate that this book will be a guide to approaching phenomena observed in electron microscopy from the prospects of diffraction physics. The SI units are employed throughout the book except for angstrom (A), which is used occasionally for convenience. To reduce the number of symbols used, the Fourier transform of a real-space function P'(r), for example, is denoted by the same symbol P'(u) in reciprocal space except that r is replaced by u. Upper and lower limits of an integral in the book are (-co, co) unless otherwise specified. The (-co, co) integral limits are usually omitted in a mathematical expression for simplification. I very much appreciate opportunity of working with Drs. J. M. Cowley and J. C. H. Spence (Arizona State University), J.


Analytical Electron Microscopy for Materials Science

Analytical Electron Microscopy for Materials Science

Author: DAISUKE Shindo

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 162

ISBN-13: 4431669884

DOWNLOAD EBOOK

Analytical electron microscopy is one of the most powerful tools today for characterization of the advanced materials that support the nanotechnology of the twenty-first century. In this book the authors clearly explain both the basic principles and the latest developments in the field. In addition to a fundamental description of the inelastic scattering process, an explanation of the constituent hardware is provided. Standard quantitative analytical techniques employing electron energy-loss spectroscopy and energy-dispersive X-ray spectroscopy are also explained, along with elemental mapping techniques. Included are sections on convergent beam electron diffraction and electron holography utilizing the field emission gun. With generous use of illustrations and experimental data, this book is a valuable resource for anyone concerned with materials characterization, electron microscopy, materials science, crystallography, and instrumentation.


Book Synopsis Analytical Electron Microscopy for Materials Science by : DAISUKE Shindo

Download or read book Analytical Electron Microscopy for Materials Science written by DAISUKE Shindo and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analytical electron microscopy is one of the most powerful tools today for characterization of the advanced materials that support the nanotechnology of the twenty-first century. In this book the authors clearly explain both the basic principles and the latest developments in the field. In addition to a fundamental description of the inelastic scattering process, an explanation of the constituent hardware is provided. Standard quantitative analytical techniques employing electron energy-loss spectroscopy and energy-dispersive X-ray spectroscopy are also explained, along with elemental mapping techniques. Included are sections on convergent beam electron diffraction and electron holography utilizing the field emission gun. With generous use of illustrations and experimental data, this book is a valuable resource for anyone concerned with materials characterization, electron microscopy, materials science, crystallography, and instrumentation.


Impact of Electron and Scanning Probe Microscopy on Materials Research

Impact of Electron and Scanning Probe Microscopy on Materials Research

Author: David G. Rickerby

Publisher: Springer Science & Business Media

Published: 1999-10-31

Total Pages: 522

ISBN-13: 9780792359395

DOWNLOAD EBOOK

This book presents a coherent synopsis of a rapidly evolving field. Subjects covered include diffraction contrast and defect analysis by conventional TEM lattice imaging, phase contrast and resolution limits in high resolution electron microscopy. Specialised electron diffraction techniques are also covered, as is the application of parallel electron energy loss spectroscopy and scanning transmission EM for subnanometer analysis. Materials analyzed include thin films, interfaces and non-conventional materials. WDS and EDS are treated, with an emphasis on phi(rhoZeta) techniques for the analysis of thin layers and surface films. Theoretical and practical aspects of ESEM are discussed in relation to applications in crystal growth, biomaterials and polymers. Recent developments in SPM are also described. A comprehensive survey of the state of the art in electron and SPM, future research directions and prospective applications in materials engineering.


Book Synopsis Impact of Electron and Scanning Probe Microscopy on Materials Research by : David G. Rickerby

Download or read book Impact of Electron and Scanning Probe Microscopy on Materials Research written by David G. Rickerby and published by Springer Science & Business Media. This book was released on 1999-10-31 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a coherent synopsis of a rapidly evolving field. Subjects covered include diffraction contrast and defect analysis by conventional TEM lattice imaging, phase contrast and resolution limits in high resolution electron microscopy. Specialised electron diffraction techniques are also covered, as is the application of parallel electron energy loss spectroscopy and scanning transmission EM for subnanometer analysis. Materials analyzed include thin films, interfaces and non-conventional materials. WDS and EDS are treated, with an emphasis on phi(rhoZeta) techniques for the analysis of thin layers and surface films. Theoretical and practical aspects of ESEM are discussed in relation to applications in crystal growth, biomaterials and polymers. Recent developments in SPM are also described. A comprehensive survey of the state of the art in electron and SPM, future research directions and prospective applications in materials engineering.


The Principles and Practice of Electron Microscopy

The Principles and Practice of Electron Microscopy

Author: Ian M. Watt

Publisher: Cambridge University Press

Published: 1997-01-30

Total Pages: 506

ISBN-13: 9780521435918

DOWNLOAD EBOOK

The first edition of this book was widely praised as an excellent introduction to electron microscopy for materials scientists, physicists, earth and biological scientists. This completely revised new edition contains expanded coverage of existing topics and much new material. The author presents the subject of electron microscopy in a readable way, open both to those inexperienced in the technique, and also to practising electron microscopists. The coverage has been brought completely up to date, whilst retaining descriptions of early classic techniques. Currently live topics such as computer control of microscopes, energy-filtered imaging, cryo- and environmental microscopy, digital imaging, and high resolution scanning and transmission microscopy are all described. The highly praised case studies of the first edition have been expanded to include some interesting new examples. This indispensable guide to electron microscopy, written by an author with thirty years practical experience, will be invaluable to new and experienced electron microscopists in any area of science and technology.


Book Synopsis The Principles and Practice of Electron Microscopy by : Ian M. Watt

Download or read book The Principles and Practice of Electron Microscopy written by Ian M. Watt and published by Cambridge University Press. This book was released on 1997-01-30 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first edition of this book was widely praised as an excellent introduction to electron microscopy for materials scientists, physicists, earth and biological scientists. This completely revised new edition contains expanded coverage of existing topics and much new material. The author presents the subject of electron microscopy in a readable way, open both to those inexperienced in the technique, and also to practising electron microscopists. The coverage has been brought completely up to date, whilst retaining descriptions of early classic techniques. Currently live topics such as computer control of microscopes, energy-filtered imaging, cryo- and environmental microscopy, digital imaging, and high resolution scanning and transmission microscopy are all described. The highly praised case studies of the first edition have been expanded to include some interesting new examples. This indispensable guide to electron microscopy, written by an author with thirty years practical experience, will be invaluable to new and experienced electron microscopists in any area of science and technology.