Topics on Concentration Phenomena and Problems with Multiple Scales

Topics on Concentration Phenomena and Problems with Multiple Scales

Author: Andrea Braides

Publisher: Springer Science & Business Media

Published: 2006-11-22

Total Pages: 326

ISBN-13: 354036546X

DOWNLOAD EBOOK

The study of variational problems showing multi-scale behaviour with oscillation or concentration phenomena is a challenging topic of very active research. This volume collects lecture notes on the asymptotic analysis of such problems when multi-scale behaviour derives from scale separation in the passage from atomistic systems to continuous functionals, from competition between bulk and surface energies, from various types of homogenization processes, and on concentration effects in Ginzburg-Landau energies and in subcritical growth problems.


Book Synopsis Topics on Concentration Phenomena and Problems with Multiple Scales by : Andrea Braides

Download or read book Topics on Concentration Phenomena and Problems with Multiple Scales written by Andrea Braides and published by Springer Science & Business Media. This book was released on 2006-11-22 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of variational problems showing multi-scale behaviour with oscillation or concentration phenomena is a challenging topic of very active research. This volume collects lecture notes on the asymptotic analysis of such problems when multi-scale behaviour derives from scale separation in the passage from atomistic systems to continuous functionals, from competition between bulk and surface energies, from various types of homogenization processes, and on concentration effects in Ginzburg-Landau energies and in subcritical growth problems.


Topics on Concentration Phenomena and Problems with Multiple Scales

Topics on Concentration Phenomena and Problems with Multiple Scales

Author: Andrea Braides

Publisher: Springer

Published: 2009-09-02

Total Pages: 316

ISBN-13: 9783540826576

DOWNLOAD EBOOK

The study of variational problems showing multi-scale behaviour with oscillation or concentration phenomena is a challenging topic of very active research. This volume collects lecture notes on the asymptotic analysis of such problems when multi-scale behaviour derives from scale separation in the passage from atomistic systems to continuous functionals, from competition between bulk and surface energies, from various types of homogenization processes, and on concentration effects in Ginzburg-Landau energies and in subcritical growth problems.


Book Synopsis Topics on Concentration Phenomena and Problems with Multiple Scales by : Andrea Braides

Download or read book Topics on Concentration Phenomena and Problems with Multiple Scales written by Andrea Braides and published by Springer. This book was released on 2009-09-02 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of variational problems showing multi-scale behaviour with oscillation or concentration phenomena is a challenging topic of very active research. This volume collects lecture notes on the asymptotic analysis of such problems when multi-scale behaviour derives from scale separation in the passage from atomistic systems to continuous functionals, from competition between bulk and surface energies, from various types of homogenization processes, and on concentration effects in Ginzburg-Landau energies and in subcritical growth problems.


Local Minimization, Variational Evolution and Γ-Convergence

Local Minimization, Variational Evolution and Γ-Convergence

Author: Andrea Braides

Publisher: Springer

Published: 2014-07-08

Total Pages: 184

ISBN-13: 3319019821

DOWNLOAD EBOOK

This book addresses new questions related to the asymptotic description of converging energies from the standpoint of local minimization and variational evolution. It explores the links between Gamma-limits, quasistatic evolution, gradient flows and stable points, raising new questions and proposing new techniques. These include the definition of effective energies that maintain the pattern of local minima, the introduction of notions of convergence of energies compatible with stable points, the computation of homogenized motions at critical time-scales through the definition of minimizing movement along a sequence of energies, the use of scaled energies to study long-term behavior or backward motion for variational evolutions. The notions explored in the book are linked to existing findings for gradient flows, energetic solutions and local minimizers, for which some generalizations are also proposed.


Book Synopsis Local Minimization, Variational Evolution and Γ-Convergence by : Andrea Braides

Download or read book Local Minimization, Variational Evolution and Γ-Convergence written by Andrea Braides and published by Springer. This book was released on 2014-07-08 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses new questions related to the asymptotic description of converging energies from the standpoint of local minimization and variational evolution. It explores the links between Gamma-limits, quasistatic evolution, gradient flows and stable points, raising new questions and proposing new techniques. These include the definition of effective energies that maintain the pattern of local minima, the introduction of notions of convergence of energies compatible with stable points, the computation of homogenized motions at critical time-scales through the definition of minimizing movement along a sequence of energies, the use of scaled energies to study long-term behavior or backward motion for variational evolutions. The notions explored in the book are linked to existing findings for gradient flows, energetic solutions and local minimizers, for which some generalizations are also proposed.


Handbook of Differential Equations: Stationary Partial Differential Equations

Handbook of Differential Equations: Stationary Partial Differential Equations

Author: Michel Chipot

Publisher: Elsevier

Published: 2006-08-08

Total Pages: 630

ISBN-13: 9780080463827

DOWNLOAD EBOOK

This handbook is volume III in a series devoted to stationary partial differential quations. Similarly as volumes I and II, it is a collection of self contained state-of-the-art surveys written by well known experts in the field. The topics covered by this handbook include singular and higher order equations, problems near critically, problems with anisotropic nonlinearities, dam problem, T-convergence and Schauder-type estimates. These surveys will be useful for both beginners and experts and speed up the progress of corresponding (rapidly developing and fascinating) areas of mathematics. Key features: - Written by well-known experts in the field - Self-contained volume in series covering one of the most rapid developing topics in mathematics - Written by well-known experts in the field - Self-contained volume in series covering one of the most rapid developing topics in mathematics


Book Synopsis Handbook of Differential Equations: Stationary Partial Differential Equations by : Michel Chipot

Download or read book Handbook of Differential Equations: Stationary Partial Differential Equations written by Michel Chipot and published by Elsevier. This book was released on 2006-08-08 with total page 630 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook is volume III in a series devoted to stationary partial differential quations. Similarly as volumes I and II, it is a collection of self contained state-of-the-art surveys written by well known experts in the field. The topics covered by this handbook include singular and higher order equations, problems near critically, problems with anisotropic nonlinearities, dam problem, T-convergence and Schauder-type estimates. These surveys will be useful for both beginners and experts and speed up the progress of corresponding (rapidly developing and fascinating) areas of mathematics. Key features: - Written by well-known experts in the field - Self-contained volume in series covering one of the most rapid developing topics in mathematics - Written by well-known experts in the field - Self-contained volume in series covering one of the most rapid developing topics in mathematics


Analysis on Graphs and Its Applications

Analysis on Graphs and Its Applications

Author: Pavel Exner

Publisher: American Mathematical Soc.

Published: 2008

Total Pages: 721

ISBN-13: 0821844717

DOWNLOAD EBOOK

This book addresses a new interdisciplinary area emerging on the border between various areas of mathematics, physics, chemistry, nanotechnology, and computer science. The focus here is on problems and techniques related to graphs, quantum graphs, and fractals that parallel those from differential equations, differential geometry, or geometric analysis. Also included are such diverse topics as number theory, geometric group theory, waveguide theory, quantum chaos, quantum wiresystems, carbon nano-structures, metal-insulator transition, computer vision, and communication networks.This volume contains a unique collection of expert reviews on the main directions in analysis on graphs (e.g., on discrete geometric analysis, zeta-functions on graphs, recently emerging connections between the geometric group theory and fractals, quantum graphs, quantum chaos on graphs, modeling waveguide systems and modeling quantum graph systems with waveguides, control theory on graphs), as well as research articles.


Book Synopsis Analysis on Graphs and Its Applications by : Pavel Exner

Download or read book Analysis on Graphs and Its Applications written by Pavel Exner and published by American Mathematical Soc.. This book was released on 2008 with total page 721 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses a new interdisciplinary area emerging on the border between various areas of mathematics, physics, chemistry, nanotechnology, and computer science. The focus here is on problems and techniques related to graphs, quantum graphs, and fractals that parallel those from differential equations, differential geometry, or geometric analysis. Also included are such diverse topics as number theory, geometric group theory, waveguide theory, quantum chaos, quantum wiresystems, carbon nano-structures, metal-insulator transition, computer vision, and communication networks.This volume contains a unique collection of expert reviews on the main directions in analysis on graphs (e.g., on discrete geometric analysis, zeta-functions on graphs, recently emerging connections between the geometric group theory and fractals, quantum graphs, quantum chaos on graphs, modeling waveguide systems and modeling quantum graph systems with waveguides, control theory on graphs), as well as research articles.


Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity

Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity

Author: Adrian Muntean

Publisher: Springer

Published: 2016-01-28

Total Pages: 295

ISBN-13: 331926883X

DOWNLOAD EBOOK

This book is the offspring of a summer school school “Macroscopic and large scale phenomena: coarse graining, mean field limits and ergodicity”, which was held in 2012 at the University of Twente, the Netherlands. The focus lies on mathematically rigorous methods for multiscale problems of physical origins. Each of the four book chapters is based on a set of lectures delivered at the school, yet all authors have expanded and refined their contributions. Francois Golse delivers a chapter on the dynamics of large particle systems in the mean field limit and surveys the most significant tools and methods to establish such limits with mathematical rigor. Golse discusses in depth a variety of examples, including Vlasov--Poisson and Vlasov--Maxwell systems. Lucia Scardia focuses on the rigorous derivation of macroscopic models using $\Gamma$-convergence, a more recent variational method, which has proved very powerful for problems in material science. Scardia illustrates this by various basic examples and a more advanced case study from dislocation theory. Alexander Mielke's contribution focuses on the multiscale modeling and rigorous analysis of generalized gradient systems through the new concept of evolutionary $\Gamma$-convergence. Numerous evocative examples are given, e.g., relating to periodic homogenization and the passage from viscous to dry friction. Martin Göll and Evgeny Verbitskiy conclude this volume, taking a dynamical systems and ergodic theory viewpoint. They review recent developments in the study of homoclinic points for certain discrete dynamical systems, relating to particle systems via ergodic properties of lattices configurations.


Book Synopsis Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity by : Adrian Muntean

Download or read book Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity written by Adrian Muntean and published by Springer. This book was released on 2016-01-28 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the offspring of a summer school school “Macroscopic and large scale phenomena: coarse graining, mean field limits and ergodicity”, which was held in 2012 at the University of Twente, the Netherlands. The focus lies on mathematically rigorous methods for multiscale problems of physical origins. Each of the four book chapters is based on a set of lectures delivered at the school, yet all authors have expanded and refined their contributions. Francois Golse delivers a chapter on the dynamics of large particle systems in the mean field limit and surveys the most significant tools and methods to establish such limits with mathematical rigor. Golse discusses in depth a variety of examples, including Vlasov--Poisson and Vlasov--Maxwell systems. Lucia Scardia focuses on the rigorous derivation of macroscopic models using $\Gamma$-convergence, a more recent variational method, which has proved very powerful for problems in material science. Scardia illustrates this by various basic examples and a more advanced case study from dislocation theory. Alexander Mielke's contribution focuses on the multiscale modeling and rigorous analysis of generalized gradient systems through the new concept of evolutionary $\Gamma$-convergence. Numerous evocative examples are given, e.g., relating to periodic homogenization and the passage from viscous to dry friction. Martin Göll and Evgeny Verbitskiy conclude this volume, taking a dynamical systems and ergodic theory viewpoint. They review recent developments in the study of homoclinic points for certain discrete dynamical systems, relating to particle systems via ergodic properties of lattices configurations.


Green's Kernels and Meso-Scale Approximations in Perforated Domains

Green's Kernels and Meso-Scale Approximations in Perforated Domains

Author: Vladimir Maz'ya

Publisher: Springer

Published: 2013-06-07

Total Pages: 258

ISBN-13: 3319003577

DOWNLOAD EBOOK

There are a wide range of applications in physics and structural mechanics involving domains with singular perturbations of the boundary. Examples include perforated domains and bodies with defects of different types. The accurate direct numerical treatment of such problems remains a challenge. Asymptotic approximations offer an alternative, efficient solution. Green’s function is considered here as the main object of study rather than a tool for generating solutions of specific boundary value problems. The uniformity of the asymptotic approximations is the principal point of attention. We also show substantial links between Green’s functions and solutions of boundary value problems for meso-scale structures. Such systems involve a large number of small inclusions, so that a small parameter, the relative size of an inclusion, may compete with a large parameter, represented as an overall number of inclusions. The main focus of the present text is on two topics: (a) asymptotics of Green’s kernels in domains with singularly perturbed boundaries and (b) meso-scale asymptotic approximations of physical fields in non-periodic domains with many inclusions. The novel feature of these asymptotic approximations is their uniformity with respect to the independent variables. This book addresses the needs of mathematicians, physicists and engineers, as well as research students interested in asymptotic analysis and numerical computations for solutions to partial differential equations.


Book Synopsis Green's Kernels and Meso-Scale Approximations in Perforated Domains by : Vladimir Maz'ya

Download or read book Green's Kernels and Meso-Scale Approximations in Perforated Domains written by Vladimir Maz'ya and published by Springer. This book was released on 2013-06-07 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are a wide range of applications in physics and structural mechanics involving domains with singular perturbations of the boundary. Examples include perforated domains and bodies with defects of different types. The accurate direct numerical treatment of such problems remains a challenge. Asymptotic approximations offer an alternative, efficient solution. Green’s function is considered here as the main object of study rather than a tool for generating solutions of specific boundary value problems. The uniformity of the asymptotic approximations is the principal point of attention. We also show substantial links between Green’s functions and solutions of boundary value problems for meso-scale structures. Such systems involve a large number of small inclusions, so that a small parameter, the relative size of an inclusion, may compete with a large parameter, represented as an overall number of inclusions. The main focus of the present text is on two topics: (a) asymptotics of Green’s kernels in domains with singularly perturbed boundaries and (b) meso-scale asymptotic approximations of physical fields in non-periodic domains with many inclusions. The novel feature of these asymptotic approximations is their uniformity with respect to the independent variables. This book addresses the needs of mathematicians, physicists and engineers, as well as research students interested in asymptotic analysis and numerical computations for solutions to partial differential equations.


Ludwig Faddeev Memorial Volume: A Life In Mathematical Physics

Ludwig Faddeev Memorial Volume: A Life In Mathematical Physics

Author: Ge Mo-lin

Publisher: World Scientific

Published: 2018-05-18

Total Pages: 636

ISBN-13: 9813233877

DOWNLOAD EBOOK

Ludwig Faddeev is widely recognized as one of the titans of 20th century mathematical physics. His fundamental contributions to scattering theory, quantum gauge theories, and the theory of classical and quantum completely integrable systems played a key role in shaping modern mathematical physics. Ludwig Faddeev's major achievements include the solution of the three-body problem in quantum mechanics, the mathematical formulation of quantum gauge theories and corresponding Feynman rules, Hamiltonian and algebraic methods in mathematical physics, with applications to gauge theories with anomalies, quantum systems with constraints and solitons, the discovery of the algebraic structure of classical and quantum integrable systems and quantum groups, and solitons with the topology of knots. Faddeev's name is imprinted in many areas of mathematics and theoretical physics, including "Faddeev's equations" and "Faddeev's Green function" in scattering theory, "Faddeev-Popov ghosts" and "Faddeev-Popov determinant" in gauge theories, "Gardner-Faddeev-Zakharov bracket" for the KdV equation, "Faddeev-Zamolodchikov algebra" in quantum integrable systems, "Faddeev-Reshetikhin-Takhtajan construction" in the theory of quantum groups, knotted solitons in the "Skyrme-Faddeev model" and many others. Ludwig Faddeev founded the St. Petersburg school of modern mathematical physics and distinguished himself by serving the mathematics community for over three decades including his leadership of the International Mathematical Union in the period of 1986-1990. He was conferred numerous prizes and memberships of prestigious institutions in recognition of the importance of his work. These include the Dannie Heineman Prize for Mathematical Physics, the Dirac Medal, the Max Planck Medal, the Shaw Prize and the Lomonosov Gold Medal among others. A gathering of contributions from some of the biggest names in mathematics and physics, this volume serves as a tribute to this legendary figure. Volume contributors include: Fields medalist Sir Michael Atiyah, Jürg Fröhlich, Roman Jackiw, Vladimir Korepin, Nikita Nekrasov, André Neveu, Alexander M Polyakov, Samson Shatashvili, Fedor Smirnov as well as Nobel laureates Frank Wilczek and C N Yang. "Ludwig and I had been good friends since the early 1970s. We had overlapping interests in several areas of physics. He was very powerful mathematically. I had written in several places that he should have shared the 1999 Nobel Prize in Physics with 't Hooft and Veltman" C N Yang, Nobel Laureate in Physics 1997 in Seoul. Faddeev with Baxter and Yang. 2005 in Tsinghua University. Left to right: Faddeev, Yang, Niemi and Ge.


Book Synopsis Ludwig Faddeev Memorial Volume: A Life In Mathematical Physics by : Ge Mo-lin

Download or read book Ludwig Faddeev Memorial Volume: A Life In Mathematical Physics written by Ge Mo-lin and published by World Scientific. This book was released on 2018-05-18 with total page 636 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ludwig Faddeev is widely recognized as one of the titans of 20th century mathematical physics. His fundamental contributions to scattering theory, quantum gauge theories, and the theory of classical and quantum completely integrable systems played a key role in shaping modern mathematical physics. Ludwig Faddeev's major achievements include the solution of the three-body problem in quantum mechanics, the mathematical formulation of quantum gauge theories and corresponding Feynman rules, Hamiltonian and algebraic methods in mathematical physics, with applications to gauge theories with anomalies, quantum systems with constraints and solitons, the discovery of the algebraic structure of classical and quantum integrable systems and quantum groups, and solitons with the topology of knots. Faddeev's name is imprinted in many areas of mathematics and theoretical physics, including "Faddeev's equations" and "Faddeev's Green function" in scattering theory, "Faddeev-Popov ghosts" and "Faddeev-Popov determinant" in gauge theories, "Gardner-Faddeev-Zakharov bracket" for the KdV equation, "Faddeev-Zamolodchikov algebra" in quantum integrable systems, "Faddeev-Reshetikhin-Takhtajan construction" in the theory of quantum groups, knotted solitons in the "Skyrme-Faddeev model" and many others. Ludwig Faddeev founded the St. Petersburg school of modern mathematical physics and distinguished himself by serving the mathematics community for over three decades including his leadership of the International Mathematical Union in the period of 1986-1990. He was conferred numerous prizes and memberships of prestigious institutions in recognition of the importance of his work. These include the Dannie Heineman Prize for Mathematical Physics, the Dirac Medal, the Max Planck Medal, the Shaw Prize and the Lomonosov Gold Medal among others. A gathering of contributions from some of the biggest names in mathematics and physics, this volume serves as a tribute to this legendary figure. Volume contributors include: Fields medalist Sir Michael Atiyah, Jürg Fröhlich, Roman Jackiw, Vladimir Korepin, Nikita Nekrasov, André Neveu, Alexander M Polyakov, Samson Shatashvili, Fedor Smirnov as well as Nobel laureates Frank Wilczek and C N Yang. "Ludwig and I had been good friends since the early 1970s. We had overlapping interests in several areas of physics. He was very powerful mathematically. I had written in several places that he should have shared the 1999 Nobel Prize in Physics with 't Hooft and Veltman" C N Yang, Nobel Laureate in Physics 1997 in Seoul. Faddeev with Baxter and Yang. 2005 in Tsinghua University. Left to right: Faddeev, Yang, Niemi and Ge.


The Periodic Unfolding Method

The Periodic Unfolding Method

Author: Doina Cioranescu

Publisher: Springer

Published: 2018-11-03

Total Pages: 515

ISBN-13: 9811330328

DOWNLOAD EBOOK

This is the first book on the subject of the periodic unfolding method (originally called "éclatement périodique" in French), which was originally developed to clarify and simplify many questions arising in the homogenization of PDE's. It has since led to the solution of some open problems. Written by the three mathematicians who developed the method, the book presents both the theory as well as numerous examples of applications for partial differential problems with rapidly oscillating coefficients: in fixed domains (Part I), in periodically perforated domains (Part II), and in domains with small holes generating a strange term (Part IV). The method applies to the case of multiple microscopic scales (with finitely many distinct scales) which is connected to partial unfolding (also useful for evolution problems). This is discussed in the framework of oscillating boundaries (Part III). A detailed example of its application to linear elasticity is presented in the case of thin elastic plates (Part V). Lastly, a complete determination of correctors for the model problem in Part I is obtained (Part VI). This book can be used as a graduate textbook to introduce the theory of homogenization of partial differential problems, and is also a must for researchers interested in this field.


Book Synopsis The Periodic Unfolding Method by : Doina Cioranescu

Download or read book The Periodic Unfolding Method written by Doina Cioranescu and published by Springer. This book was released on 2018-11-03 with total page 515 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book on the subject of the periodic unfolding method (originally called "éclatement périodique" in French), which was originally developed to clarify and simplify many questions arising in the homogenization of PDE's. It has since led to the solution of some open problems. Written by the three mathematicians who developed the method, the book presents both the theory as well as numerous examples of applications for partial differential problems with rapidly oscillating coefficients: in fixed domains (Part I), in periodically perforated domains (Part II), and in domains with small holes generating a strange term (Part IV). The method applies to the case of multiple microscopic scales (with finitely many distinct scales) which is connected to partial unfolding (also useful for evolution problems). This is discussed in the framework of oscillating boundaries (Part III). A detailed example of its application to linear elasticity is presented in the case of thin elastic plates (Part V). Lastly, a complete determination of correctors for the model problem in Part I is obtained (Part VI). This book can be used as a graduate textbook to introduce the theory of homogenization of partial differential problems, and is also a must for researchers interested in this field.


Mathematical Reviews

Mathematical Reviews

Author:

Publisher:

Published: 2008

Total Pages: 932

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis Mathematical Reviews by :

Download or read book Mathematical Reviews written by and published by . This book was released on 2008 with total page 932 pages. Available in PDF, EPUB and Kindle. Book excerpt: