Towards Neuromorphic Machine Intelligence

Towards Neuromorphic Machine Intelligence

Author: Hong Qu

Publisher: Elsevier

Published: 2024-06-28

Total Pages: 222

ISBN-13: 0443328218

DOWNLOAD EBOOK

Towards Neuromorphic Machine Intelligence: Spike-Based Representation, Learning and Applications provides readers with in-depth understanding of Spiking Neural Networks (SNN), which is a burgeoning research branch of Artificial Neural Networks (ANN), AI, and Machine Learning that sits at the heart of the integration between Computer Science and Neural Engineering. In recent years, neural networks have re-emerged in relation to AI, representing a well-grounded paradigm rooted in disciplines from physics and psychology to information science and engineering. This book represents one of the established cross-over areas where neurophysiology, cognition, and neural engineering coincide with the development of new Machine Learning and AI paradigms. There are many excellent theoretical achievements in neuron models, learning algorithms, network architecture and so on. But these achievements are numerous and scattered, with a lack of straightforward systematic integration, making it difficult for researchers to assimilate and apply. As the third generation of Artificial Neural Networks (ANN), Spiking Neural Networks (SNN) simulate the neuron dynamics and information transmission in a biological neural system in more detail, which is a cross-product of computer science and neuroscience. The primary target audience of this book is divided into two categories: artificial intelligence researchers who know nothing about SNN, and researchers who know a lot about SNN. The former needs to acquire fundamental knowledge of SNN, but the challenge is that a large number of existing literatures on SNN only slightly mention the basic knowledge of SNN, or are too superficial, and this book gives a systematic explanation from scratch. The latter needs to learn about some novel research achievements in the field of SNN, and this book introduces the latest research results on different aspects of SNN and provides detailed simulation processes to facilitate readers' replication. In addition, the book introduces neuromorphic hardware architecture as a further extension of the SNN system. The book starts with the birth and development of SNN, and then introduces the main research hotspots, including spiking neuron models, learning algorithms, network architectures, and neuromorphic hardware. Therefore, the book provides readers with easy access to both the foundational concepts and recent research findings in SNN. Introduces Spiking Neural Networks (SNN), a new generation of biologically inspired artificial intelligence Systematically presents basic concepts of SNN, neuron and network models, learning algorithms, and neuromorphic hardware Introduces the latest research results on various aspects of SNN and provides detailed simulation processes to facilitate readers' replication


Book Synopsis Towards Neuromorphic Machine Intelligence by : Hong Qu

Download or read book Towards Neuromorphic Machine Intelligence written by Hong Qu and published by Elsevier. This book was released on 2024-06-28 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: Towards Neuromorphic Machine Intelligence: Spike-Based Representation, Learning and Applications provides readers with in-depth understanding of Spiking Neural Networks (SNN), which is a burgeoning research branch of Artificial Neural Networks (ANN), AI, and Machine Learning that sits at the heart of the integration between Computer Science and Neural Engineering. In recent years, neural networks have re-emerged in relation to AI, representing a well-grounded paradigm rooted in disciplines from physics and psychology to information science and engineering. This book represents one of the established cross-over areas where neurophysiology, cognition, and neural engineering coincide with the development of new Machine Learning and AI paradigms. There are many excellent theoretical achievements in neuron models, learning algorithms, network architecture and so on. But these achievements are numerous and scattered, with a lack of straightforward systematic integration, making it difficult for researchers to assimilate and apply. As the third generation of Artificial Neural Networks (ANN), Spiking Neural Networks (SNN) simulate the neuron dynamics and information transmission in a biological neural system in more detail, which is a cross-product of computer science and neuroscience. The primary target audience of this book is divided into two categories: artificial intelligence researchers who know nothing about SNN, and researchers who know a lot about SNN. The former needs to acquire fundamental knowledge of SNN, but the challenge is that a large number of existing literatures on SNN only slightly mention the basic knowledge of SNN, or are too superficial, and this book gives a systematic explanation from scratch. The latter needs to learn about some novel research achievements in the field of SNN, and this book introduces the latest research results on different aspects of SNN and provides detailed simulation processes to facilitate readers' replication. In addition, the book introduces neuromorphic hardware architecture as a further extension of the SNN system. The book starts with the birth and development of SNN, and then introduces the main research hotspots, including spiking neuron models, learning algorithms, network architectures, and neuromorphic hardware. Therefore, the book provides readers with easy access to both the foundational concepts and recent research findings in SNN. Introduces Spiking Neural Networks (SNN), a new generation of biologically inspired artificial intelligence Systematically presents basic concepts of SNN, neuron and network models, learning algorithms, and neuromorphic hardware Introduces the latest research results on various aspects of SNN and provides detailed simulation processes to facilitate readers' replication


Mem-elements for Neuromorphic Circuits with Artificial Intelligence Applications

Mem-elements for Neuromorphic Circuits with Artificial Intelligence Applications

Author: Christos Volos

Publisher: Academic Press

Published: 2021-06-17

Total Pages: 570

ISBN-13: 0128232021

DOWNLOAD EBOOK

Mem-elements for Neuromorphic Circuits with Artificial Intelligence Applications illustrates recent advances in the field of mem-elements (memristor, memcapacitor, meminductor) and their applications in nonlinear dynamical systems, computer science, analog and digital systems, and in neuromorphic circuits and artificial intelligence. The book is mainly devoted to recent results, critical aspects and perspectives of ongoing research on relevant topics, all involving networks of mem-elements devices in diverse applications. Sections contribute to the discussion of memristive materials and transport mechanisms, presenting various types of physical structures that can be fabricated to realize mem-elements in integrated circuits and device modeling. As the last decade has seen an increasing interest in recent advances in mem-elements and their applications in neuromorphic circuits and artificial intelligence, this book will attract researchers in various fields. Covers a broad range of interdisciplinary topics between mathematics, circuits, realizations, and practical applications related to nonlinear dynamical systems, nanotechnology, analog and digital systems, computer science and artificial intelligence Presents recent advances in the field of mem-elements (memristor, memcapacitor, meminductor) Includes interesting applications of mem-elements in nonlinear dynamical systems, analog and digital systems, neuromorphic circuits, computer science and artificial intelligence


Book Synopsis Mem-elements for Neuromorphic Circuits with Artificial Intelligence Applications by : Christos Volos

Download or read book Mem-elements for Neuromorphic Circuits with Artificial Intelligence Applications written by Christos Volos and published by Academic Press. This book was released on 2021-06-17 with total page 570 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mem-elements for Neuromorphic Circuits with Artificial Intelligence Applications illustrates recent advances in the field of mem-elements (memristor, memcapacitor, meminductor) and their applications in nonlinear dynamical systems, computer science, analog and digital systems, and in neuromorphic circuits and artificial intelligence. The book is mainly devoted to recent results, critical aspects and perspectives of ongoing research on relevant topics, all involving networks of mem-elements devices in diverse applications. Sections contribute to the discussion of memristive materials and transport mechanisms, presenting various types of physical structures that can be fabricated to realize mem-elements in integrated circuits and device modeling. As the last decade has seen an increasing interest in recent advances in mem-elements and their applications in neuromorphic circuits and artificial intelligence, this book will attract researchers in various fields. Covers a broad range of interdisciplinary topics between mathematics, circuits, realizations, and practical applications related to nonlinear dynamical systems, nanotechnology, analog and digital systems, computer science and artificial intelligence Presents recent advances in the field of mem-elements (memristor, memcapacitor, meminductor) Includes interesting applications of mem-elements in nonlinear dynamical systems, analog and digital systems, neuromorphic circuits, computer science and artificial intelligence


Neuromorphic Devices for Brain-inspired Computing

Neuromorphic Devices for Brain-inspired Computing

Author: Qing Wan

Publisher: John Wiley & Sons

Published: 2022-05-16

Total Pages: 258

ISBN-13: 3527349790

DOWNLOAD EBOOK

Explore the cutting-edge of neuromorphic technologies with applications in Artificial Intelligence In Neuromorphic Devices for Brain-Inspired Computing: Artificial Intelligence, Perception, and Robotics, a team of expert engineers delivers a comprehensive discussion of all aspects of neuromorphic electronics designed to assist researchers and professionals to understand and apply all manner of brain-inspired computing and perception technologies. The book covers both memristic and neuromorphic devices, including spintronic, multi-terminal, and neuromorphic perceptual applications. Summarizing recent progress made in five distinct configurations of brain-inspired computing, the authors explore this promising technology’s potential applications in two specific areas: neuromorphic computing systems and neuromorphic perceptual systems. The book also includes: A thorough introduction to two-terminal neuromorphic memristors, including memristive devices and resistive switching mechanisms Comprehensive explorations of spintronic neuromorphic devices and multi-terminal neuromorphic devices with cognitive behaviors Practical discussions of neuromorphic devices based on chalcogenide and organic materials In-depth examinations of neuromorphic computing and perceptual systems with emerging devices Perfect for materials scientists, biochemists, and electronics engineers, Neuromorphic Devices for Brain-Inspired Computing: Artificial Intelligence, Perception, and Robotics will also earn a place in the libraries of neurochemists, neurobiologists, and neurophysiologists.


Book Synopsis Neuromorphic Devices for Brain-inspired Computing by : Qing Wan

Download or read book Neuromorphic Devices for Brain-inspired Computing written by Qing Wan and published by John Wiley & Sons. This book was released on 2022-05-16 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore the cutting-edge of neuromorphic technologies with applications in Artificial Intelligence In Neuromorphic Devices for Brain-Inspired Computing: Artificial Intelligence, Perception, and Robotics, a team of expert engineers delivers a comprehensive discussion of all aspects of neuromorphic electronics designed to assist researchers and professionals to understand and apply all manner of brain-inspired computing and perception technologies. The book covers both memristic and neuromorphic devices, including spintronic, multi-terminal, and neuromorphic perceptual applications. Summarizing recent progress made in five distinct configurations of brain-inspired computing, the authors explore this promising technology’s potential applications in two specific areas: neuromorphic computing systems and neuromorphic perceptual systems. The book also includes: A thorough introduction to two-terminal neuromorphic memristors, including memristive devices and resistive switching mechanisms Comprehensive explorations of spintronic neuromorphic devices and multi-terminal neuromorphic devices with cognitive behaviors Practical discussions of neuromorphic devices based on chalcogenide and organic materials In-depth examinations of neuromorphic computing and perceptual systems with emerging devices Perfect for materials scientists, biochemists, and electronics engineers, Neuromorphic Devices for Brain-Inspired Computing: Artificial Intelligence, Perception, and Robotics will also earn a place in the libraries of neurochemists, neurobiologists, and neurophysiologists.


Neuromorphic Intelligence

Neuromorphic Intelligence

Author: Shuangming Yang

Publisher: Springer Nature

Published:

Total Pages: 256

ISBN-13: 3031578732

DOWNLOAD EBOOK


Book Synopsis Neuromorphic Intelligence by : Shuangming Yang

Download or read book Neuromorphic Intelligence written by Shuangming Yang and published by Springer Nature. This book was released on with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Understanding and Bridging the Gap between Neuromorphic Computing and Machine Learning

Understanding and Bridging the Gap between Neuromorphic Computing and Machine Learning

Author: Lei Deng

Publisher: Frontiers Media SA

Published: 2021-05-05

Total Pages: 200

ISBN-13: 2889667421

DOWNLOAD EBOOK


Book Synopsis Understanding and Bridging the Gap between Neuromorphic Computing and Machine Learning by : Lei Deng

Download or read book Understanding and Bridging the Gap between Neuromorphic Computing and Machine Learning written by Lei Deng and published by Frontiers Media SA. This book was released on 2021-05-05 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Primer to Neuromorphic Computing

Primer to Neuromorphic Computing

Author: Harish Garg

Publisher: Academic Press

Published: 2024-11-01

Total Pages: 0

ISBN-13: 9780443214806

DOWNLOAD EBOOK

Primer to Neuromorphic Computing highlights critical and ongoing research into the diverse applications of neuromorphic computing. It includes an overview of primary scientific concepts for the research topic of neuromorphic computing, such as neurons as computational units, artificial intelligence, machine learning, and neuromorphic models. It also discusses the fundamental design method and organization of neuromorphic architecture. Hardware for neuromorphic systems can be developed by exploiting the magnetic properties of different materials. These systems are more energy efficient and enable faster computation . Magnetic tunnel junctions and magnetic textures can be employed to act as neurons and synapses. Neuromorphic systems have general intelligence like humans as they can apply knowledge gained in one domain to other domains.


Book Synopsis Primer to Neuromorphic Computing by : Harish Garg

Download or read book Primer to Neuromorphic Computing written by Harish Garg and published by Academic Press. This book was released on 2024-11-01 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Primer to Neuromorphic Computing highlights critical and ongoing research into the diverse applications of neuromorphic computing. It includes an overview of primary scientific concepts for the research topic of neuromorphic computing, such as neurons as computational units, artificial intelligence, machine learning, and neuromorphic models. It also discusses the fundamental design method and organization of neuromorphic architecture. Hardware for neuromorphic systems can be developed by exploiting the magnetic properties of different materials. These systems are more energy efficient and enable faster computation . Magnetic tunnel junctions and magnetic textures can be employed to act as neurons and synapses. Neuromorphic systems have general intelligence like humans as they can apply knowledge gained in one domain to other domains.


Neuromorphic Computing Principles and Organization

Neuromorphic Computing Principles and Organization

Author: Abderazek Ben Abdallah

Publisher: Springer Nature

Published: 2022-05-31

Total Pages: 260

ISBN-13: 3030925250

DOWNLOAD EBOOK

This book focuses on neuromorphic computing principles and organization and how to build fault-tolerant scalable hardware for large and medium scale spiking neural networks with learning capabilities. In addition, the book describes in a comprehensive way the organization and how to design a spike-based neuromorphic system to perform network of spiking neurons communication, computing, and adaptive learning for emerging AI applications. The book begins with an overview of neuromorphic computing systems and explores the fundamental concepts of artificial neural networks. Next, we discuss artificial neurons and how they have evolved in their representation of biological neuronal dynamics. Afterward, we discuss implementing these neural networks in neuron models, storage technologies, inter-neuron communication networks, learning, and various design approaches. Then, comes the fundamental design principle to build an efficient neuromorphic system in hardware. The challenges that need to be solved toward building a spiking neural network architecture with many synapses are discussed. Learning in neuromorphic computing systems and the major emerging memory technologies that promise neuromorphic computing are then given. A particular chapter of this book is dedicated to the circuits and architectures used for communication in neuromorphic systems. In particular, the Network-on-Chip fabric is introduced for receiving and transmitting spikes following the Address Event Representation (AER) protocol and the memory accessing method. In addition, the interconnect design principle is covered to help understand the overall concept of on-chip and off-chip communication. Advanced on-chip interconnect technologies, including si-photonic three-dimensional interconnects and fault-tolerant routing algorithms, are also given. The book also covers the main threats of reliability and discusses several recovery methods for multicore neuromorphic systems. This is important for reliable processing in several embedded neuromorphic applications. A reconfigurable design approach that supports multiple target applications via dynamic reconfigurability, network topology independence, and network expandability is also described in the subsequent chapters. The book ends with a case study about a real hardware-software design of a reliable three-dimensional digital neuromorphic processor geared explicitly toward the 3D-ICs biological brain’s three-dimensional structure. The platform enables high integration density and slight spike delay of spiking networks and features a scalable design. We present methods for fault detection and recovery in a neuromorphic system as well. Neuromorphic Computing Principles and Organization is an excellent resource for researchers, scientists, graduate students, and hardware-software engineers dealing with the ever-increasing demands on fault-tolerance, scalability, and low power consumption. It is also an excellent resource for teaching advanced undergraduate and graduate students about the fundamentals concepts, organization, and actual hardware-software design of reliable neuromorphic systems with learning and fault-tolerance capabilities.


Book Synopsis Neuromorphic Computing Principles and Organization by : Abderazek Ben Abdallah

Download or read book Neuromorphic Computing Principles and Organization written by Abderazek Ben Abdallah and published by Springer Nature. This book was released on 2022-05-31 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on neuromorphic computing principles and organization and how to build fault-tolerant scalable hardware for large and medium scale spiking neural networks with learning capabilities. In addition, the book describes in a comprehensive way the organization and how to design a spike-based neuromorphic system to perform network of spiking neurons communication, computing, and adaptive learning for emerging AI applications. The book begins with an overview of neuromorphic computing systems and explores the fundamental concepts of artificial neural networks. Next, we discuss artificial neurons and how they have evolved in their representation of biological neuronal dynamics. Afterward, we discuss implementing these neural networks in neuron models, storage technologies, inter-neuron communication networks, learning, and various design approaches. Then, comes the fundamental design principle to build an efficient neuromorphic system in hardware. The challenges that need to be solved toward building a spiking neural network architecture with many synapses are discussed. Learning in neuromorphic computing systems and the major emerging memory technologies that promise neuromorphic computing are then given. A particular chapter of this book is dedicated to the circuits and architectures used for communication in neuromorphic systems. In particular, the Network-on-Chip fabric is introduced for receiving and transmitting spikes following the Address Event Representation (AER) protocol and the memory accessing method. In addition, the interconnect design principle is covered to help understand the overall concept of on-chip and off-chip communication. Advanced on-chip interconnect technologies, including si-photonic three-dimensional interconnects and fault-tolerant routing algorithms, are also given. The book also covers the main threats of reliability and discusses several recovery methods for multicore neuromorphic systems. This is important for reliable processing in several embedded neuromorphic applications. A reconfigurable design approach that supports multiple target applications via dynamic reconfigurability, network topology independence, and network expandability is also described in the subsequent chapters. The book ends with a case study about a real hardware-software design of a reliable three-dimensional digital neuromorphic processor geared explicitly toward the 3D-ICs biological brain’s three-dimensional structure. The platform enables high integration density and slight spike delay of spiking networks and features a scalable design. We present methods for fault detection and recovery in a neuromorphic system as well. Neuromorphic Computing Principles and Organization is an excellent resource for researchers, scientists, graduate students, and hardware-software engineers dealing with the ever-increasing demands on fault-tolerance, scalability, and low power consumption. It is also an excellent resource for teaching advanced undergraduate and graduate students about the fundamentals concepts, organization, and actual hardware-software design of reliable neuromorphic systems with learning and fault-tolerance capabilities.


From Artificial Intelligence to Brain Intelligence

From Artificial Intelligence to Brain Intelligence

Author: Rajiv Joshi

Publisher: CRC Press

Published: 2022-09-01

Total Pages: 209

ISBN-13: 1000795829

DOWNLOAD EBOOK

Research in Artificial Intelligence (AI) is not new, it has been around since 1950’s. AI resurfaced at that time while Moore’s law was on an aggressive path of scaling, with the transformation of NMOS and later bipolar technology to CMOS for high performance, low power as well as low cost applications.Several breakthroughs in the electronics industry helped to push Moore’s law in chip miniaturization along with increased computing power (parallel and distributed processing) and memory bandwidth. Once this paradigm shift occurred it naturally opened doors for AI as it required big data manipulations, and thus AI could thrive again. AI has already shown success in industries such as finance, marketing, health care, transportation, gaming, education and the defence and space, to name but a few.The human brain amazingly has a memory in the order of millions of digital bits, however it cannot compete with machines for data crunching and speed. Thus tomorrow’s world will be a World of Wonders of Artificial Intelligence (WOW- AI), to compensate the computational limitations of human beings. In short, AI research and applications will continue to grow with the development of software, algorithms and hardware accelerators.To continue the development of AI, an advanced AI Compute Symposium was launched with the sponsorship of IBM, IEEE CAS and EDS, from which this book came. Overall, the book covers two broad topics: general AI advances, and applications to neuromorphic computing.


Book Synopsis From Artificial Intelligence to Brain Intelligence by : Rajiv Joshi

Download or read book From Artificial Intelligence to Brain Intelligence written by Rajiv Joshi and published by CRC Press. This book was released on 2022-09-01 with total page 209 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research in Artificial Intelligence (AI) is not new, it has been around since 1950’s. AI resurfaced at that time while Moore’s law was on an aggressive path of scaling, with the transformation of NMOS and later bipolar technology to CMOS for high performance, low power as well as low cost applications.Several breakthroughs in the electronics industry helped to push Moore’s law in chip miniaturization along with increased computing power (parallel and distributed processing) and memory bandwidth. Once this paradigm shift occurred it naturally opened doors for AI as it required big data manipulations, and thus AI could thrive again. AI has already shown success in industries such as finance, marketing, health care, transportation, gaming, education and the defence and space, to name but a few.The human brain amazingly has a memory in the order of millions of digital bits, however it cannot compete with machines for data crunching and speed. Thus tomorrow’s world will be a World of Wonders of Artificial Intelligence (WOW- AI), to compensate the computational limitations of human beings. In short, AI research and applications will continue to grow with the development of software, algorithms and hardware accelerators.To continue the development of AI, an advanced AI Compute Symposium was launched with the sponsorship of IBM, IEEE CAS and EDS, from which this book came. Overall, the book covers two broad topics: general AI advances, and applications to neuromorphic computing.


Memristors for Neuromorphic Circuits and Artificial Intelligence Applications

Memristors for Neuromorphic Circuits and Artificial Intelligence Applications

Author: Jordi Suñé

Publisher: MDPI

Published: 2020-04-09

Total Pages: 244

ISBN-13: 3039285769

DOWNLOAD EBOOK

Artificial Intelligence (AI) has found many applications in the past decade due to the ever increasing computing power. Artificial Neural Networks are inspired in the brain structure and consist in the interconnection of artificial neurons through artificial synapses. Training these systems requires huge amounts of data and, after the network is trained, it can recognize unforeseen data and provide useful information. The so-called Spiking Neural Networks behave similarly to how the brain functions and are very energy efficient. Up to this moment, both spiking and conventional neural networks have been implemented in software programs running on conventional computing units. However, this approach requires high computing power, a large physical space and is energy inefficient. Thus, there is an increasing interest in developing AI tools directly implemented in hardware. The first hardware demonstrations have been based on CMOS circuits for neurons and specific communication protocols for synapses. However, to further increase training speed and energy efficiency while decreasing system size, the combination of CMOS neurons with memristor synapses is being explored. The memristor is a resistor with memory which behaves similarly to biological synapses. This book explores the state-of-the-art of neuromorphic circuits implementing neural networks with memristors for AI applications.


Book Synopsis Memristors for Neuromorphic Circuits and Artificial Intelligence Applications by : Jordi Suñé

Download or read book Memristors for Neuromorphic Circuits and Artificial Intelligence Applications written by Jordi Suñé and published by MDPI. This book was released on 2020-04-09 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence (AI) has found many applications in the past decade due to the ever increasing computing power. Artificial Neural Networks are inspired in the brain structure and consist in the interconnection of artificial neurons through artificial synapses. Training these systems requires huge amounts of data and, after the network is trained, it can recognize unforeseen data and provide useful information. The so-called Spiking Neural Networks behave similarly to how the brain functions and are very energy efficient. Up to this moment, both spiking and conventional neural networks have been implemented in software programs running on conventional computing units. However, this approach requires high computing power, a large physical space and is energy inefficient. Thus, there is an increasing interest in developing AI tools directly implemented in hardware. The first hardware demonstrations have been based on CMOS circuits for neurons and specific communication protocols for synapses. However, to further increase training speed and energy efficiency while decreasing system size, the combination of CMOS neurons with memristor synapses is being explored. The memristor is a resistor with memory which behaves similarly to biological synapses. This book explores the state-of-the-art of neuromorphic circuits implementing neural networks with memristors for AI applications.


Neuromorphic Cognitive Systems

Neuromorphic Cognitive Systems

Author: Qiang Yu

Publisher: Springer

Published: 2017-05-03

Total Pages: 180

ISBN-13: 3319553100

DOWNLOAD EBOOK

This book presents neuromorphic cognitive systems from a learning and memory-centered perspective. It illustrates how to build a system network of neurons to perform spike-based information processing, computing, and high-level cognitive tasks. It is beneficial to a wide spectrum of readers, including undergraduate and postgraduate students and researchers who are interested in neuromorphic computing and neuromorphic engineering, as well as engineers and professionals in industry who are involved in the design and applications of neuromorphic cognitive systems, neuromorphic sensors and processors, and cognitive robotics. The book formulates a systematic framework, from the basic mathematical and computational methods in spike-based neural encoding, learning in both single and multi-layered networks, to a near cognitive level composed of memory and cognition. Since the mechanisms for integrating spiking neurons integrate to formulate cognitive functions as in the brain are little understood, studies of neuromorphic cognitive systems are urgently needed. The topics covered in this book range from the neuronal level to the system level. In the neuronal level, synaptic adaptation plays an important role in learning patterns. In order to perform higher-level cognitive functions such as recognition and memory, spiking neurons with learning abilities are consistently integrated, building a system with encoding, learning and memory functionalities. The book describes these aspects in detail.


Book Synopsis Neuromorphic Cognitive Systems by : Qiang Yu

Download or read book Neuromorphic Cognitive Systems written by Qiang Yu and published by Springer. This book was released on 2017-05-03 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents neuromorphic cognitive systems from a learning and memory-centered perspective. It illustrates how to build a system network of neurons to perform spike-based information processing, computing, and high-level cognitive tasks. It is beneficial to a wide spectrum of readers, including undergraduate and postgraduate students and researchers who are interested in neuromorphic computing and neuromorphic engineering, as well as engineers and professionals in industry who are involved in the design and applications of neuromorphic cognitive systems, neuromorphic sensors and processors, and cognitive robotics. The book formulates a systematic framework, from the basic mathematical and computational methods in spike-based neural encoding, learning in both single and multi-layered networks, to a near cognitive level composed of memory and cognition. Since the mechanisms for integrating spiking neurons integrate to formulate cognitive functions as in the brain are little understood, studies of neuromorphic cognitive systems are urgently needed. The topics covered in this book range from the neuronal level to the system level. In the neuronal level, synaptic adaptation plays an important role in learning patterns. In order to perform higher-level cognitive functions such as recognition and memory, spiking neurons with learning abilities are consistently integrated, building a system with encoding, learning and memory functionalities. The book describes these aspects in detail.