Two-dimensional X-ray Diffraction

Two-dimensional X-ray Diffraction

Author: Bob B. He

Publisher: John Wiley & Sons

Published: 2018-06-26

Total Pages: 488

ISBN-13: 1119356105

DOWNLOAD EBOOK

An indispensable resource for researchers and students in materials science, chemistry, physics, and pharmaceuticals Written by one of the pioneers of 2D X-Ray Diffraction, this updated and expanded edition of the definitive text in the field provides comprehensive coverage of the fundamentals of that analytical method, as well as state-of-the art experimental methods and applications. Geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis, and combinatorial screening are all covered in detail. Numerous experimental examples in materials research, manufacture, and pharmaceuticals are provided throughout. Two-dimensional x-ray diffraction is the ideal, non-destructive analytical method for examining samples of all kinds including metals, polymers, ceramics, semiconductors, thin films, coatings, paints, biomaterials, composites, and more. Two-Dimensional X-Ray Diffraction, Second Edition is an up-to-date resource for understanding how the latest 2D detectors are integrated into diffractometers, how to get the best data using the 2D detector for diffraction, and how to interpret this data. All those desirous of setting up a 2D diffraction in their own laboratories will find the author’s coverage of the physical principles, projection geometry, and mathematical derivations extremely helpful. Features new contents in all chapters with most figures in full color to reveal more details in illustrations and diffraction patterns Covers the recent advances in detector technology and 2D data collection strategies that have led to dramatic increases in the use of two-dimensional detectors for x-ray diffraction Provides in-depth coverage of new innovations in x-ray sources, optics, system configurations, applications and data evaluation algorithms Contains new methods and experimental examples in stress, texture, crystal size, crystal orientation and thin film analysis Two-Dimensional X-Ray Diffraction, Second Edition is an important working resource for industrial and academic researchers and developers in materials science, chemistry, physics, pharmaceuticals, and all those who use x-ray diffraction as a characterization method. Users of all levels, instrument technicians and X-ray laboratory managers, as well as instrument developers, will want to have it on hand.


Book Synopsis Two-dimensional X-ray Diffraction by : Bob B. He

Download or read book Two-dimensional X-ray Diffraction written by Bob B. He and published by John Wiley & Sons. This book was released on 2018-06-26 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: An indispensable resource for researchers and students in materials science, chemistry, physics, and pharmaceuticals Written by one of the pioneers of 2D X-Ray Diffraction, this updated and expanded edition of the definitive text in the field provides comprehensive coverage of the fundamentals of that analytical method, as well as state-of-the art experimental methods and applications. Geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis, and combinatorial screening are all covered in detail. Numerous experimental examples in materials research, manufacture, and pharmaceuticals are provided throughout. Two-dimensional x-ray diffraction is the ideal, non-destructive analytical method for examining samples of all kinds including metals, polymers, ceramics, semiconductors, thin films, coatings, paints, biomaterials, composites, and more. Two-Dimensional X-Ray Diffraction, Second Edition is an up-to-date resource for understanding how the latest 2D detectors are integrated into diffractometers, how to get the best data using the 2D detector for diffraction, and how to interpret this data. All those desirous of setting up a 2D diffraction in their own laboratories will find the author’s coverage of the physical principles, projection geometry, and mathematical derivations extremely helpful. Features new contents in all chapters with most figures in full color to reveal more details in illustrations and diffraction patterns Covers the recent advances in detector technology and 2D data collection strategies that have led to dramatic increases in the use of two-dimensional detectors for x-ray diffraction Provides in-depth coverage of new innovations in x-ray sources, optics, system configurations, applications and data evaluation algorithms Contains new methods and experimental examples in stress, texture, crystal size, crystal orientation and thin film analysis Two-Dimensional X-Ray Diffraction, Second Edition is an important working resource for industrial and academic researchers and developers in materials science, chemistry, physics, pharmaceuticals, and all those who use x-ray diffraction as a characterization method. Users of all levels, instrument technicians and X-ray laboratory managers, as well as instrument developers, will want to have it on hand.


Two-dimensional X-ray Diffraction

Two-dimensional X-ray Diffraction

Author: Bob B. He

Publisher: John Wiley & Sons

Published: 2018-05-18

Total Pages: 496

ISBN-13: 1119356067

DOWNLOAD EBOOK

An indispensable resource for researchers and students in materials science, chemistry, physics, and pharmaceuticals Written by one of the pioneers of 2D X-Ray Diffraction, this updated and expanded edition of the definitive text in the field provides comprehensive coverage of the fundamentals of that analytical method, as well as state-of-the art experimental methods and applications. Geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis, and combinatorial screening are all covered in detail. Numerous experimental examples in materials research, manufacture, and pharmaceuticals are provided throughout. Two-dimensional x-ray diffraction is the ideal, non-destructive analytical method for examining samples of all kinds including metals, polymers, ceramics, semiconductors, thin films, coatings, paints, biomaterials, composites, and more. Two-Dimensional X-Ray Diffraction, Second Edition is an up-to-date resource for understanding how the latest 2D detectors are integrated into diffractometers, how to get the best data using the 2D detector for diffraction, and how to interpret this data. All those desirous of setting up a 2D diffraction in their own laboratories will find the author’s coverage of the physical principles, projection geometry, and mathematical derivations extremely helpful. Features new contents in all chapters with most figures in full color to reveal more details in illustrations and diffraction patterns Covers the recent advances in detector technology and 2D data collection strategies that have led to dramatic increases in the use of two-dimensional detectors for x-ray diffraction Provides in-depth coverage of new innovations in x-ray sources, optics, system configurations, applications and data evaluation algorithms Contains new methods and experimental examples in stress, texture, crystal size, crystal orientation and thin film analysis Two-Dimensional X-Ray Diffraction, Second Edition is an important working resource for industrial and academic researchers and developers in materials science, chemistry, physics, pharmaceuticals, and all those who use x-ray diffraction as a characterization method. Users of all levels, instrument technicians and X-ray laboratory managers, as well as instrument developers, will want to have it on hand.


Book Synopsis Two-dimensional X-ray Diffraction by : Bob B. He

Download or read book Two-dimensional X-ray Diffraction written by Bob B. He and published by John Wiley & Sons. This book was released on 2018-05-18 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: An indispensable resource for researchers and students in materials science, chemistry, physics, and pharmaceuticals Written by one of the pioneers of 2D X-Ray Diffraction, this updated and expanded edition of the definitive text in the field provides comprehensive coverage of the fundamentals of that analytical method, as well as state-of-the art experimental methods and applications. Geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis, and combinatorial screening are all covered in detail. Numerous experimental examples in materials research, manufacture, and pharmaceuticals are provided throughout. Two-dimensional x-ray diffraction is the ideal, non-destructive analytical method for examining samples of all kinds including metals, polymers, ceramics, semiconductors, thin films, coatings, paints, biomaterials, composites, and more. Two-Dimensional X-Ray Diffraction, Second Edition is an up-to-date resource for understanding how the latest 2D detectors are integrated into diffractometers, how to get the best data using the 2D detector for diffraction, and how to interpret this data. All those desirous of setting up a 2D diffraction in their own laboratories will find the author’s coverage of the physical principles, projection geometry, and mathematical derivations extremely helpful. Features new contents in all chapters with most figures in full color to reveal more details in illustrations and diffraction patterns Covers the recent advances in detector technology and 2D data collection strategies that have led to dramatic increases in the use of two-dimensional detectors for x-ray diffraction Provides in-depth coverage of new innovations in x-ray sources, optics, system configurations, applications and data evaluation algorithms Contains new methods and experimental examples in stress, texture, crystal size, crystal orientation and thin film analysis Two-Dimensional X-Ray Diffraction, Second Edition is an important working resource for industrial and academic researchers and developers in materials science, chemistry, physics, pharmaceuticals, and all those who use x-ray diffraction as a characterization method. Users of all levels, instrument technicians and X-ray laboratory managers, as well as instrument developers, will want to have it on hand.


Two-Dimensional X-Ray Diffraction

Two-Dimensional X-Ray Diffraction

Author: Bob B. He

Publisher: John Wiley & Sons

Published: 2011-09-20

Total Pages: 359

ISBN-13: 1118210751

DOWNLOAD EBOOK

Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to researchers in materials science, chemistry, physics, and pharmaceuticals, as well as graduate-level students in these areas.


Book Synopsis Two-Dimensional X-Ray Diffraction by : Bob B. He

Download or read book Two-Dimensional X-Ray Diffraction written by Bob B. He and published by John Wiley & Sons. This book was released on 2011-09-20 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to researchers in materials science, chemistry, physics, and pharmaceuticals, as well as graduate-level students in these areas.


Multiple Diffraction of X-Rays in Crystals

Multiple Diffraction of X-Rays in Crystals

Author: Shih-Lin In-Hang

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 312

ISBN-13: 3642821669

DOWNLOAD EBOOK

The three-dimensional arrangement of atoms and molecules in crystals and the comparable magnitude of x-ray wavelengths and interatomic distances make it possible for crystals to have more than one set of atomic planes that satisfy Bragg's law and simultaneously diffract an incident x-ray beam - this is the so-called multiple diffraction. This type of diffraction should, in prin ciple, reflect three-dimensional information about the structure of the dif fracting material. Recent progress in understanding this diffraction phenome non and in utilizing this diffraction technique in solid-state and materials sciences reveals the diversity as well as the importance of multiple diffraction of x-rays in application. Unfortunately, there has been no single book written that gives a sys tematic review of this type of diffraction, encompasses its diverse applica tions, and foresees future trends gf development. It is for this purpose that this book is designed. It is hoped that its appearance may possibly turn more attention of condensed-matter physicists, chemists and material scientists toward this particular phenomenon, and that new methods of non-destructive analysis of matter using this diffraction technique may be developed in the future.


Book Synopsis Multiple Diffraction of X-Rays in Crystals by : Shih-Lin In-Hang

Download or read book Multiple Diffraction of X-Rays in Crystals written by Shih-Lin In-Hang and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: The three-dimensional arrangement of atoms and molecules in crystals and the comparable magnitude of x-ray wavelengths and interatomic distances make it possible for crystals to have more than one set of atomic planes that satisfy Bragg's law and simultaneously diffract an incident x-ray beam - this is the so-called multiple diffraction. This type of diffraction should, in prin ciple, reflect three-dimensional information about the structure of the dif fracting material. Recent progress in understanding this diffraction phenome non and in utilizing this diffraction technique in solid-state and materials sciences reveals the diversity as well as the importance of multiple diffraction of x-rays in application. Unfortunately, there has been no single book written that gives a sys tematic review of this type of diffraction, encompasses its diverse applica tions, and foresees future trends gf development. It is for this purpose that this book is designed. It is hoped that its appearance may possibly turn more attention of condensed-matter physicists, chemists and material scientists toward this particular phenomenon, and that new methods of non-destructive analysis of matter using this diffraction technique may be developed in the future.


One- and Two-dimensional X-ray Diffraction

One- and Two-dimensional X-ray Diffraction

Author: B. D. CULLITY

Publisher:

Published: 1951

Total Pages: 1

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis One- and Two-dimensional X-ray Diffraction by : B. D. CULLITY

Download or read book One- and Two-dimensional X-ray Diffraction written by B. D. CULLITY and published by . This book was released on 1951 with total page 1 pages. Available in PDF, EPUB and Kindle. Book excerpt:


X-Ray and Neutron Diffraction

X-Ray and Neutron Diffraction

Author: G. E. Bacon

Publisher: Elsevier

Published: 2013-09-03

Total Pages: 393

ISBN-13: 1483158292

DOWNLOAD EBOOK

X-Ray and Neutron Diffraction describes the developments of the X-ray and the various research done in neutron diffraction. Part I of the book concerns the principles and applications of the X-ray and neutrons through their origins from classical crystallography. The book explains the use of diffraction methods to show the highly regular arrangement of atoms that forms a continuous pattern in three-dimensional space. The text evaluates the limitations and benefits of using the different types of radiation sources, whether these are X-rays, neutrons, or electrons. Part II is a collection of reprints discussing the development of techniques that includes a modification of the Bragg method, which is a method of X-ray crystal analysis. One paper presents an improved numerical method of two-dimensional Fourier synthesis for crystals. This method uses a greatly reduced process of arrangement of sets of figures found in the two-dimensional Fourier series. The book also notes the theoretical considerations and the practical details, and then addresses precautions against possible inclusions of errors in this method. The text deals as well with the magnetic scattering of neutrons, and one paper presents a simple method of gathering information about the magnetic moment of the neutron besides the traditional Stern-Gerlach method. Nuclear scientists and physicists, atomic researchers, and nuclear engineers will greatly appreciate the book.


Book Synopsis X-Ray and Neutron Diffraction by : G. E. Bacon

Download or read book X-Ray and Neutron Diffraction written by G. E. Bacon and published by Elsevier. This book was released on 2013-09-03 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: X-Ray and Neutron Diffraction describes the developments of the X-ray and the various research done in neutron diffraction. Part I of the book concerns the principles and applications of the X-ray and neutrons through their origins from classical crystallography. The book explains the use of diffraction methods to show the highly regular arrangement of atoms that forms a continuous pattern in three-dimensional space. The text evaluates the limitations and benefits of using the different types of radiation sources, whether these are X-rays, neutrons, or electrons. Part II is a collection of reprints discussing the development of techniques that includes a modification of the Bragg method, which is a method of X-ray crystal analysis. One paper presents an improved numerical method of two-dimensional Fourier synthesis for crystals. This method uses a greatly reduced process of arrangement of sets of figures found in the two-dimensional Fourier series. The book also notes the theoretical considerations and the practical details, and then addresses precautions against possible inclusions of errors in this method. The text deals as well with the magnetic scattering of neutrons, and one paper presents a simple method of gathering information about the magnetic moment of the neutron besides the traditional Stern-Gerlach method. Nuclear scientists and physicists, atomic researchers, and nuclear engineers will greatly appreciate the book.


Novel Microstructures for Solids

Novel Microstructures for Solids

Author: Richard A Dunlap

Publisher: Morgan & Claypool Publishers

Published: 2018-12-05

Total Pages: 125

ISBN-13: 1643273388

DOWNLOAD EBOOK

For many years, evidence suggested that all solid materials either possessed a periodic crystal structure as proposed by the Braggs or they were amorphous glasses with no long-range order. In the 1970s, Roger Penrose hypothesized structures (Penrose tilings) with long-range order which were not periodic. The existence of a solid phase, known as a quasicrystal, that possessed the structure of a three dimensional Penrose tiling, was demonstrated experimentally in 1984 by Dan Shechtman and colleagues. Shechtman received the 2011 Nobel Prize in Chemistry for his discovery. The discovery and description of quasicrystalline materials provided the first concrete evidence that traditional crystals could be viewed as a subset of a more general category of ordered materials. This book introduces the diversity of structures that are now known to exist in solids through a consideration of quasicrystals (Part I) and the various structures of elemental carbon (Part II) and through an analysis of their relationship to conventional crystal structures. Both quasicrystals and the various allotropes of carbon are excellent examples of how our understanding of the microstructure of solids has progressed over the years beyond the concepts of traditional crystallography.


Book Synopsis Novel Microstructures for Solids by : Richard A Dunlap

Download or read book Novel Microstructures for Solids written by Richard A Dunlap and published by Morgan & Claypool Publishers. This book was released on 2018-12-05 with total page 125 pages. Available in PDF, EPUB and Kindle. Book excerpt: For many years, evidence suggested that all solid materials either possessed a periodic crystal structure as proposed by the Braggs or they were amorphous glasses with no long-range order. In the 1970s, Roger Penrose hypothesized structures (Penrose tilings) with long-range order which were not periodic. The existence of a solid phase, known as a quasicrystal, that possessed the structure of a three dimensional Penrose tiling, was demonstrated experimentally in 1984 by Dan Shechtman and colleagues. Shechtman received the 2011 Nobel Prize in Chemistry for his discovery. The discovery and description of quasicrystalline materials provided the first concrete evidence that traditional crystals could be viewed as a subset of a more general category of ordered materials. This book introduces the diversity of structures that are now known to exist in solids through a consideration of quasicrystals (Part I) and the various structures of elemental carbon (Part II) and through an analysis of their relationship to conventional crystal structures. Both quasicrystals and the various allotropes of carbon are excellent examples of how our understanding of the microstructure of solids has progressed over the years beyond the concepts of traditional crystallography.


Elements of X Ray Diffraction

Elements of X Ray Diffraction

Author: B. D. Cullity

Publisher: Franklin Classics Trade Press

Published: 2018-11-10

Total Pages: 526

ISBN-13: 9780353234284

DOWNLOAD EBOOK

This work has been selected by scholars as being culturally important and is part of the knowledge base of civilization as we know it. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. To ensure a quality reading experience, this work has been proofread and republished using a format that seamlessly blends the original graphical elements with text in an easy-to-read typeface. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.


Book Synopsis Elements of X Ray Diffraction by : B. D. Cullity

Download or read book Elements of X Ray Diffraction written by B. D. Cullity and published by Franklin Classics Trade Press. This book was released on 2018-11-10 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work has been selected by scholars as being culturally important and is part of the knowledge base of civilization as we know it. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. To ensure a quality reading experience, this work has been proofread and republished using a format that seamlessly blends the original graphical elements with text in an easy-to-read typeface. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.


X-Ray Multiple-Wave Diffraction

X-Ray Multiple-Wave Diffraction

Author: Shih-Lin Chang

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 443

ISBN-13: 3662109840

DOWNLOAD EBOOK

X-ray multiple-wave diffraction, sometimes called multiple diffraction or N-beam diffraction, results from the scattering of X-rays from periodic two or higher-dimensional structures, like 2-d and 3-d crystals and even quasi crystals. The interaction of the X-rays with the periodic arrangement of atoms usually provides structural information about the scatterer. Unlike the usual Bragg reflection, the so-called two-wave diffraction, the multiply diffracted intensities are sensitive to the phases of the structure factors in volved. This gives X-ray multiple-wave diffraction the chance to solve the X-ray phase problem. On the other hand, the condition for generating an X ray multiple-wave diffraction is much more strict than in two-wave cases. This makes X-ray multiple-wave diffraction a useful technique for precise measure ments of crystal lattice constants and the wavelength of radiation sources. Recent progress in the application of this particular diffraction technique to surfaces, thin films, and less ordered systems has demonstrated the diver sity and practicability of the technique for structural research in condensed matter physics, materials sciences, crystallography, and X-ray optics. The first book on this subject, Multiple Diffraction of X-Rays in Crystals, was published in 1984, and intended to give a contemporary review on the fundamental and application aspects of this diffraction.


Book Synopsis X-Ray Multiple-Wave Diffraction by : Shih-Lin Chang

Download or read book X-Ray Multiple-Wave Diffraction written by Shih-Lin Chang and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt: X-ray multiple-wave diffraction, sometimes called multiple diffraction or N-beam diffraction, results from the scattering of X-rays from periodic two or higher-dimensional structures, like 2-d and 3-d crystals and even quasi crystals. The interaction of the X-rays with the periodic arrangement of atoms usually provides structural information about the scatterer. Unlike the usual Bragg reflection, the so-called two-wave diffraction, the multiply diffracted intensities are sensitive to the phases of the structure factors in volved. This gives X-ray multiple-wave diffraction the chance to solve the X-ray phase problem. On the other hand, the condition for generating an X ray multiple-wave diffraction is much more strict than in two-wave cases. This makes X-ray multiple-wave diffraction a useful technique for precise measure ments of crystal lattice constants and the wavelength of radiation sources. Recent progress in the application of this particular diffraction technique to surfaces, thin films, and less ordered systems has demonstrated the diver sity and practicability of the technique for structural research in condensed matter physics, materials sciences, crystallography, and X-ray optics. The first book on this subject, Multiple Diffraction of X-Rays in Crystals, was published in 1984, and intended to give a contemporary review on the fundamental and application aspects of this diffraction.


X-Ray Diffraction Crystallography

X-Ray Diffraction Crystallography

Author: Yoshio Waseda

Publisher: Springer Science & Business Media

Published: 2011-03-18

Total Pages: 320

ISBN-13: 3642166350

DOWNLOAD EBOOK

X-ray diffraction crystallography for powder samples is a well-established and widely used method. It is applied to materials characterization to reveal the atomic scale structure of various substances in a variety of states. The book deals with fundamental properties of X-rays, geometry analysis of crystals, X-ray scattering and diffraction in polycrystalline samples and its application to the determination of the crystal structure. The reciprocal lattice and integrated diffraction intensity from crystals and symmetry analysis of crystals are explained. To learn the method of X-ray diffraction crystallography well and to be able to cope with the given subject, a certain number of exercises is presented in the book to calculate specific values for typical examples. This is particularly important for beginners in X-ray diffraction crystallography. One aim of this book is to offer guidance to solving the problems of 90 typical substances. For further convenience, 100 supplementary exercises are also provided with solutions. Some essential points with basic equations are summarized in each chapter, together with some relevant physical constants and the atomic scattering factors of the elements.


Book Synopsis X-Ray Diffraction Crystallography by : Yoshio Waseda

Download or read book X-Ray Diffraction Crystallography written by Yoshio Waseda and published by Springer Science & Business Media. This book was released on 2011-03-18 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: X-ray diffraction crystallography for powder samples is a well-established and widely used method. It is applied to materials characterization to reveal the atomic scale structure of various substances in a variety of states. The book deals with fundamental properties of X-rays, geometry analysis of crystals, X-ray scattering and diffraction in polycrystalline samples and its application to the determination of the crystal structure. The reciprocal lattice and integrated diffraction intensity from crystals and symmetry analysis of crystals are explained. To learn the method of X-ray diffraction crystallography well and to be able to cope with the given subject, a certain number of exercises is presented in the book to calculate specific values for typical examples. This is particularly important for beginners in X-ray diffraction crystallography. One aim of this book is to offer guidance to solving the problems of 90 typical substances. For further convenience, 100 supplementary exercises are also provided with solutions. Some essential points with basic equations are summarized in each chapter, together with some relevant physical constants and the atomic scattering factors of the elements.