Ultra Low-Power Biomedical Signal Processing

Ultra Low-Power Biomedical Signal Processing

Author: Sandro Augusto Pavlik Haddad

Publisher: Springer Science & Business Media

Published: 2009-05-26

Total Pages: 221

ISBN-13: 1402090730

DOWNLOAD EBOOK

Often WT systems employ the discrete wavelet transform, implemented on a digital signal processor. However, in ultra low-power applications such as biomedical implantable devices, it is not suitable to implement the WT by means of digital circuitry due to the relatively high power consumption associated with the required A/D converter. Low-power analog realization of the wavelet transform enables its application in vivo, e.g. in pacemakers, where the wavelet transform provides a means to extremely reliable cardiac signal detection. In Ultra Low-Power Biomedical Signal Processing we present a novel method for implementing signal processing based on WT in an analog way. The methodology presented focuses on the development of ultra low-power analog integrated circuits that implement the required signal processing, taking into account the limitations imposed by an implantable device.


Book Synopsis Ultra Low-Power Biomedical Signal Processing by : Sandro Augusto Pavlik Haddad

Download or read book Ultra Low-Power Biomedical Signal Processing written by Sandro Augusto Pavlik Haddad and published by Springer Science & Business Media. This book was released on 2009-05-26 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: Often WT systems employ the discrete wavelet transform, implemented on a digital signal processor. However, in ultra low-power applications such as biomedical implantable devices, it is not suitable to implement the WT by means of digital circuitry due to the relatively high power consumption associated with the required A/D converter. Low-power analog realization of the wavelet transform enables its application in vivo, e.g. in pacemakers, where the wavelet transform provides a means to extremely reliable cardiac signal detection. In Ultra Low-Power Biomedical Signal Processing we present a novel method for implementing signal processing based on WT in an analog way. The methodology presented focuses on the development of ultra low-power analog integrated circuits that implement the required signal processing, taking into account the limitations imposed by an implantable device.


Ultra Low-power Biomedical Signal Processing

Ultra Low-power Biomedical Signal Processing

Author: Sandro Augusto Pavlík Haddad

Publisher:

Published: 2006

Total Pages:

ISBN-13: 9789090212371

DOWNLOAD EBOOK


Book Synopsis Ultra Low-power Biomedical Signal Processing by : Sandro Augusto Pavlík Haddad

Download or read book Ultra Low-power Biomedical Signal Processing written by Sandro Augusto Pavlík Haddad and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:


Analog IC Design Techniques for Nanopower Biomedical Signal Processing

Analog IC Design Techniques for Nanopower Biomedical Signal Processing

Author: Chutham Sawigun

Publisher: CRC Press

Published: 2022-09-01

Total Pages: 199

ISBN-13: 1000794601

DOWNLOAD EBOOK

As the requirements for low power consumption and very small physical dimensions in portable, wearable and implantable medical devices are calling for integrated circuit design techniques using MOSFETs operating in the subthreshold regime, this book first revisits some well-known circuit techniques that use CMOS devices biased in subthreshold in order to establish nanopower integrated circuit designs. Based on the these findings, this book shows the development of a class-AB current-mode sample-and-hold circuit with an order of magnitude improvement in its figure of merit compared to other state-of-the-art designs. Also, the concepts and design procedures of 1) single-branch filters 2) follower-integrator-based lowpass filters and 3) modular transconductance reduction techniques for very low frequency filters are presented. Finally, to serve the requirement of a very large signal swing in an energy-based action potential detector, a nanopower class-AB current-mode analog multiplier is designed to handle input current amplitudes of more than 10 times the bias current of the multiplier circuit. The invented filter circuits have been fabricated in a standard 0.18 μ CMOS process in order to verify our circuit concepts and design procedures. Their experimental results are reported.


Book Synopsis Analog IC Design Techniques for Nanopower Biomedical Signal Processing by : Chutham Sawigun

Download or read book Analog IC Design Techniques for Nanopower Biomedical Signal Processing written by Chutham Sawigun and published by CRC Press. This book was released on 2022-09-01 with total page 199 pages. Available in PDF, EPUB and Kindle. Book excerpt: As the requirements for low power consumption and very small physical dimensions in portable, wearable and implantable medical devices are calling for integrated circuit design techniques using MOSFETs operating in the subthreshold regime, this book first revisits some well-known circuit techniques that use CMOS devices biased in subthreshold in order to establish nanopower integrated circuit designs. Based on the these findings, this book shows the development of a class-AB current-mode sample-and-hold circuit with an order of magnitude improvement in its figure of merit compared to other state-of-the-art designs. Also, the concepts and design procedures of 1) single-branch filters 2) follower-integrator-based lowpass filters and 3) modular transconductance reduction techniques for very low frequency filters are presented. Finally, to serve the requirement of a very large signal swing in an energy-based action potential detector, a nanopower class-AB current-mode analog multiplier is designed to handle input current amplitudes of more than 10 times the bias current of the multiplier circuit. The invented filter circuits have been fabricated in a standard 0.18 μ CMOS process in order to verify our circuit concepts and design procedures. Their experimental results are reported.


Ultra-Low-Voltage Frequency Synthesizer and Successive-Approximation Analog-to-Digital Converter for Biomedical Applications

Ultra-Low-Voltage Frequency Synthesizer and Successive-Approximation Analog-to-Digital Converter for Biomedical Applications

Author: Chung-Chih Hung

Publisher: Springer Nature

Published: 2021-12-07

Total Pages: 231

ISBN-13: 3030888452

DOWNLOAD EBOOK

This book introduces the origin of biomedical signals and the operating principles behind them and introduces the characteristics of common biomedical signals for subsequent signal measurement and judgment. Since biomedical signals are captured by wearable devices, sensor devices, or implanted devices, these devices are all battery-powered to maintain long working time. We hope to reduce their power consumption to extend service life, especially for implantable devices, because battery replacement can only be done through surgery. Therefore, we must understand how to design low-power integrated circuits. Both implantable and in-vitro medical signal detectors require two basic components to collect and transmit biomedical signals: an analog-to-digital converter and a frequency synthesizer because these measured biomedical signals are wirelessly transmitted to the relevant receiving unit. The core unit of wireless transmission is the frequency synthesizer, which provides a wide frequency range and stable frequency to demonstrate the quality and performance of the wireless transmitter. Therefore, the basic operating principle and model of the frequency synthesizer are introduced. We also show design examples and measurement results of a low-power low-voltage integer-N frequency synthesizer for biomedical applications. The detection of biomedical signals needs to be converted into digital signals by an analog-to-digital converter to facilitate subsequent signal processing and recognition. Therefore, the operating principle of the analog-to-digital converter is introduced. We also show implementation examples and measurement results of low-power low-voltage analog-to-digital converters for biomedical applications.


Book Synopsis Ultra-Low-Voltage Frequency Synthesizer and Successive-Approximation Analog-to-Digital Converter for Biomedical Applications by : Chung-Chih Hung

Download or read book Ultra-Low-Voltage Frequency Synthesizer and Successive-Approximation Analog-to-Digital Converter for Biomedical Applications written by Chung-Chih Hung and published by Springer Nature. This book was released on 2021-12-07 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the origin of biomedical signals and the operating principles behind them and introduces the characteristics of common biomedical signals for subsequent signal measurement and judgment. Since biomedical signals are captured by wearable devices, sensor devices, or implanted devices, these devices are all battery-powered to maintain long working time. We hope to reduce their power consumption to extend service life, especially for implantable devices, because battery replacement can only be done through surgery. Therefore, we must understand how to design low-power integrated circuits. Both implantable and in-vitro medical signal detectors require two basic components to collect and transmit biomedical signals: an analog-to-digital converter and a frequency synthesizer because these measured biomedical signals are wirelessly transmitted to the relevant receiving unit. The core unit of wireless transmission is the frequency synthesizer, which provides a wide frequency range and stable frequency to demonstrate the quality and performance of the wireless transmitter. Therefore, the basic operating principle and model of the frequency synthesizer are introduced. We also show design examples and measurement results of a low-power low-voltage integer-N frequency synthesizer for biomedical applications. The detection of biomedical signals needs to be converted into digital signals by an analog-to-digital converter to facilitate subsequent signal processing and recognition. Therefore, the operating principle of the analog-to-digital converter is introduced. We also show implementation examples and measurement results of low-power low-voltage analog-to-digital converters for biomedical applications.


Analog IC Design Techniques for Nanopower Biomedical Signal Processing

Analog IC Design Techniques for Nanopower Biomedical Signal Processing

Author: Chutham Sawigun

Publisher: River Publishers

Published: 2016-05-31

Total Pages: 198

ISBN-13: 8793379293

DOWNLOAD EBOOK

As the requirements for low power consumption and very small physical dimensions in portable, wearable and implantable medical devices are calling for integrated circuit design techniques using MOSFETs operating in the subthreshold regime, this book first revisits some well-known circuit techniques that use CMOS devices biased in subthreshold in order to establish nanopower integrated circuit designs. Based on the these findings, this book shows the development of a class-AB current-mode sample-and-hold circuit with an order of magnitude improvement in its figure of merit compared to other state-of-the-art designs. Also, the concepts and design procedures of 1) single-branch filters 2) follower-integrator-based lowpass filters and 3) modular transconductance reduction techniques for very low frequency filters are presented. Finally, to serve the requirement of a very large signal swing in an energy-based action potential detector, a nanopower class-AB current-mode analog multiplier is designed to handle input current amplitudes of more than 10 times the bias current of the multiplier circuit. The invented filter circuits have been fabricated in a standard 0.18 µ CMOS process in order to verify our circuit concepts and design procedures. Their experimental results are reported.


Book Synopsis Analog IC Design Techniques for Nanopower Biomedical Signal Processing by : Chutham Sawigun

Download or read book Analog IC Design Techniques for Nanopower Biomedical Signal Processing written by Chutham Sawigun and published by River Publishers. This book was released on 2016-05-31 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: As the requirements for low power consumption and very small physical dimensions in portable, wearable and implantable medical devices are calling for integrated circuit design techniques using MOSFETs operating in the subthreshold regime, this book first revisits some well-known circuit techniques that use CMOS devices biased in subthreshold in order to establish nanopower integrated circuit designs. Based on the these findings, this book shows the development of a class-AB current-mode sample-and-hold circuit with an order of magnitude improvement in its figure of merit compared to other state-of-the-art designs. Also, the concepts and design procedures of 1) single-branch filters 2) follower-integrator-based lowpass filters and 3) modular transconductance reduction techniques for very low frequency filters are presented. Finally, to serve the requirement of a very large signal swing in an energy-based action potential detector, a nanopower class-AB current-mode analog multiplier is designed to handle input current amplitudes of more than 10 times the bias current of the multiplier circuit. The invented filter circuits have been fabricated in a standard 0.18 µ CMOS process in order to verify our circuit concepts and design procedures. Their experimental results are reported.


Ultra Low Power Bioelectronics

Ultra Low Power Bioelectronics

Author: Rahul Sarpeshkar

Publisher: Cambridge University Press

Published: 2010-02-22

Total Pages: 909

ISBN-13: 1139485237

DOWNLOAD EBOOK

This book provides, for the first time, a broad and deep treatment of the fields of both ultra low power electronics and bioelectronics. It discusses fundamental principles and circuits for ultra low power electronic design and their applications in biomedical systems. It also discusses how ultra energy efficient cellular and neural systems in biology can inspire revolutionary low power architectures in mixed-signal and RF electronics. The book presents a unique, unifying view of ultra low power analog and digital electronics and emphasizes the use of the ultra energy efficient subthreshold regime of transistor operation in both. Chapters on batteries, energy harvesting, and the future of energy provide an understanding of fundamental relationships between energy use and energy generation at small scales and at large scales. A wealth of insights and examples from brain implants, cochlear implants, bio-molecular sensing, cardiac devices, and bio-inspired systems make the book useful and engaging for students and practicing engineers.


Book Synopsis Ultra Low Power Bioelectronics by : Rahul Sarpeshkar

Download or read book Ultra Low Power Bioelectronics written by Rahul Sarpeshkar and published by Cambridge University Press. This book was released on 2010-02-22 with total page 909 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides, for the first time, a broad and deep treatment of the fields of both ultra low power electronics and bioelectronics. It discusses fundamental principles and circuits for ultra low power electronic design and their applications in biomedical systems. It also discusses how ultra energy efficient cellular and neural systems in biology can inspire revolutionary low power architectures in mixed-signal and RF electronics. The book presents a unique, unifying view of ultra low power analog and digital electronics and emphasizes the use of the ultra energy efficient subthreshold regime of transistor operation in both. Chapters on batteries, energy harvesting, and the future of energy provide an understanding of fundamental relationships between energy use and energy generation at small scales and at large scales. A wealth of insights and examples from brain implants, cochlear implants, bio-molecular sensing, cardiac devices, and bio-inspired systems make the book useful and engaging for students and practicing engineers.


Ultra Low Power ECG Processing System for IoT Devices

Ultra Low Power ECG Processing System for IoT Devices

Author: Temesghen Tekeste Habte

Publisher: Springer

Published: 2018-09-06

Total Pages: 94

ISBN-13: 331997016X

DOWNLOAD EBOOK

​This book describes an ECG processing architecture that guides biomedical SoC developers, from theory to implementation and testing. The authors provide complete coverage of the digital circuit implementation of an ultra-low power biomedical SoC, comprised of a detailed description of an ECG processor implemented and fabricated on chip. Coverage also includes the challenges and tradeoffs of designing ECG processors. Describes digital circuit architecture for implementing ECG processing algorithms on chip; Includes coverage of signal processing techniques for ECG processing; Features ultra-low power circuit design techniques; Enables design of ECG processing architectures and their respective on-chip implementation.


Book Synopsis Ultra Low Power ECG Processing System for IoT Devices by : Temesghen Tekeste Habte

Download or read book Ultra Low Power ECG Processing System for IoT Devices written by Temesghen Tekeste Habte and published by Springer. This book was released on 2018-09-06 with total page 94 pages. Available in PDF, EPUB and Kindle. Book excerpt: ​This book describes an ECG processing architecture that guides biomedical SoC developers, from theory to implementation and testing. The authors provide complete coverage of the digital circuit implementation of an ultra-low power biomedical SoC, comprised of a detailed description of an ECG processor implemented and fabricated on chip. Coverage also includes the challenges and tradeoffs of designing ECG processors. Describes digital circuit architecture for implementing ECG processing algorithms on chip; Includes coverage of signal processing techniques for ECG processing; Features ultra-low power circuit design techniques; Enables design of ECG processing architectures and their respective on-chip implementation.


Biopotential Readout Circuits for Portable Acquisition Systems

Biopotential Readout Circuits for Portable Acquisition Systems

Author: Refet Firat Yazicioglu

Publisher: Springer Science & Business Media

Published: 2008-10-16

Total Pages: 164

ISBN-13: 1402090935

DOWNLOAD EBOOK

Biopotential Readout Circuits for Portable Acquisition Systems describes one of the main building blocks of such miniaturized biomedical signal acquisition systems. The focus of this book is on the implementation of low-power and high-performance integrated circuit building blocks that can be used to extract biopotential signals from conventional biopotential electrodes. New instrumentation amplifier architectures are introduced and their design is described in detail. These amplifiers are used to implement complete acquisition demonstrator systems that are a stepping stone towards practical miniaturized and low-power systems.


Book Synopsis Biopotential Readout Circuits for Portable Acquisition Systems by : Refet Firat Yazicioglu

Download or read book Biopotential Readout Circuits for Portable Acquisition Systems written by Refet Firat Yazicioglu and published by Springer Science & Business Media. This book was released on 2008-10-16 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biopotential Readout Circuits for Portable Acquisition Systems describes one of the main building blocks of such miniaturized biomedical signal acquisition systems. The focus of this book is on the implementation of low-power and high-performance integrated circuit building blocks that can be used to extract biopotential signals from conventional biopotential electrodes. New instrumentation amplifier architectures are introduced and their design is described in detail. These amplifiers are used to implement complete acquisition demonstrator systems that are a stepping stone towards practical miniaturized and low-power systems.


Analog-and-Algorithm-Assisted Ultra-low Power Biosignal Acquisition Systems

Analog-and-Algorithm-Assisted Ultra-low Power Biosignal Acquisition Systems

Author: Venkata Rajesh Pamula

Publisher: Springer

Published: 2019-01-02

Total Pages: 114

ISBN-13: 3030058700

DOWNLOAD EBOOK

This book discusses the design and implementation aspects of ultra-low power biosignal acquisition platforms that exploit analog-assisted and algorithmic approaches for power savings.The authors describe an approach referred to as “analog-and-algorithm-assisted” signal processing.This enables significant power consumption reductions by implementing low power biosignal acquisition systems, leveraging analog preprocessing and algorithmic approaches to reduce the data rate very early in the signal processing chain.They demonstrate savings for wearable sensor networks (WSN) and body area networks (BAN), in the sensors’ stimulation power consumption, as well in the power consumption of the digital signal processing and the radio link. Two specific implementations, an adaptive sampling electrocardiogram (ECG) acquisition and a compressive sampling (CS) photoplethysmogram (PPG) acquisition system, are demonstrated. First book to present the so called, “analog-and-algorithm-assisted” approaches for ultra-low power biosignal acquisition and processing platforms; Covers the recent trend of “beyond Nyquist rate” signal acquisition and processing in detail, including adaptive sampling and compressive sampling paradigms; Includes chapters on compressed domain feature extraction, as well as acquisition of photoplethysmogram, an emerging optical sensing modality, including compressive sampling based PPG readout with embedded feature extraction; Discusses emerging trends in sensor fusion for improving the signal integrity, as well as lowering the power consumption of biosignal acquisition systems.


Book Synopsis Analog-and-Algorithm-Assisted Ultra-low Power Biosignal Acquisition Systems by : Venkata Rajesh Pamula

Download or read book Analog-and-Algorithm-Assisted Ultra-low Power Biosignal Acquisition Systems written by Venkata Rajesh Pamula and published by Springer. This book was released on 2019-01-02 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the design and implementation aspects of ultra-low power biosignal acquisition platforms that exploit analog-assisted and algorithmic approaches for power savings.The authors describe an approach referred to as “analog-and-algorithm-assisted” signal processing.This enables significant power consumption reductions by implementing low power biosignal acquisition systems, leveraging analog preprocessing and algorithmic approaches to reduce the data rate very early in the signal processing chain.They demonstrate savings for wearable sensor networks (WSN) and body area networks (BAN), in the sensors’ stimulation power consumption, as well in the power consumption of the digital signal processing and the radio link. Two specific implementations, an adaptive sampling electrocardiogram (ECG) acquisition and a compressive sampling (CS) photoplethysmogram (PPG) acquisition system, are demonstrated. First book to present the so called, “analog-and-algorithm-assisted” approaches for ultra-low power biosignal acquisition and processing platforms; Covers the recent trend of “beyond Nyquist rate” signal acquisition and processing in detail, including adaptive sampling and compressive sampling paradigms; Includes chapters on compressed domain feature extraction, as well as acquisition of photoplethysmogram, an emerging optical sensing modality, including compressive sampling based PPG readout with embedded feature extraction; Discusses emerging trends in sensor fusion for improving the signal integrity, as well as lowering the power consumption of biosignal acquisition systems.


Ultra-Low Power Integrated Circuit Design

Ultra-Low Power Integrated Circuit Design

Author: Nianxiong Nick Tan

Publisher: Springer Science & Business Media

Published: 2013-10-23

Total Pages: 236

ISBN-13: 1441999736

DOWNLOAD EBOOK

This book describes the design of CMOS circuits for ultra-low power consumption including analog, radio frequency (RF), and digital signal processing circuits (DSP). The book addresses issues from circuit and system design to production design, and applies the ultra-low power circuits described to systems for digital hearing aids and capsule endoscope devices. Provides a valuable introduction to ultra-low power circuit design, aimed at practicing design engineers; Describes all key building blocks of ultra-low power circuits, from a systems perspective; Applies circuits and systems described to real product examples such as hearing aids and capsule endoscopes.


Book Synopsis Ultra-Low Power Integrated Circuit Design by : Nianxiong Nick Tan

Download or read book Ultra-Low Power Integrated Circuit Design written by Nianxiong Nick Tan and published by Springer Science & Business Media. This book was released on 2013-10-23 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the design of CMOS circuits for ultra-low power consumption including analog, radio frequency (RF), and digital signal processing circuits (DSP). The book addresses issues from circuit and system design to production design, and applies the ultra-low power circuits described to systems for digital hearing aids and capsule endoscope devices. Provides a valuable introduction to ultra-low power circuit design, aimed at practicing design engineers; Describes all key building blocks of ultra-low power circuits, from a systems perspective; Applies circuits and systems described to real product examples such as hearing aids and capsule endoscopes.