Uncertainty Analysis of Experimental Data with R

Uncertainty Analysis of Experimental Data with R

Author: Benjamin David Shaw

Publisher: CRC Press

Published: 2017-07-06

Total Pages: 201

ISBN-13: 1315342596

DOWNLOAD EBOOK

"This would be an excellent book for undergraduate, graduate and beyond....The style of writing is easy to read and the author does a good job of adding humor in places. The integration of basic programming in R with the data that is collected for any experiment provides a powerful platform for analysis of data.... having the understanding of data analysis that this book offers will really help researchers examine their data and consider its value from multiple perspectives – and this applies to people who have small AND large data sets alike! This book also helps people use a free and basic software system for processing and plotting simple to complex functions." Michelle Pantoya, Texas Tech University Measurements of quantities that vary in a continuous fashion, e.g., the pressure of a gas, cannot be measured exactly and there will always be some uncertainty with these measured values, so it is vital for researchers to be able to quantify this data. Uncertainty Analysis of Experimental Data with R covers methods for evaluation of uncertainties in experimental data, as well as predictions made using these data, with implementation in R. The books discusses both basic and more complex methods including linear regression, nonlinear regression, and kernel smoothing curve fits, as well as Taylor Series, Monte Carlo and Bayesian approaches. Features: 1. Extensive use of modern open source software (R). 2. Many code examples are provided. 3. The uncertainty analyses conform to accepted professional standards (ASME). 4. The book is self-contained and includes all necessary material including chapters on statistics and programming in R. Benjamin D. Shaw is a professor in the Mechanical and Aerospace Engineering Department at the University of California, Davis. His research interests are primarily in experimental and theoretical aspects of combustion. Along with other courses, he has taught undergraduate and graduate courses on engineering experimentation and uncertainty analysis. He has published widely in archival journals and became an ASME Fellow in 2003.


Book Synopsis Uncertainty Analysis of Experimental Data with R by : Benjamin David Shaw

Download or read book Uncertainty Analysis of Experimental Data with R written by Benjamin David Shaw and published by CRC Press. This book was released on 2017-07-06 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This would be an excellent book for undergraduate, graduate and beyond....The style of writing is easy to read and the author does a good job of adding humor in places. The integration of basic programming in R with the data that is collected for any experiment provides a powerful platform for analysis of data.... having the understanding of data analysis that this book offers will really help researchers examine their data and consider its value from multiple perspectives – and this applies to people who have small AND large data sets alike! This book also helps people use a free and basic software system for processing and plotting simple to complex functions." Michelle Pantoya, Texas Tech University Measurements of quantities that vary in a continuous fashion, e.g., the pressure of a gas, cannot be measured exactly and there will always be some uncertainty with these measured values, so it is vital for researchers to be able to quantify this data. Uncertainty Analysis of Experimental Data with R covers methods for evaluation of uncertainties in experimental data, as well as predictions made using these data, with implementation in R. The books discusses both basic and more complex methods including linear regression, nonlinear regression, and kernel smoothing curve fits, as well as Taylor Series, Monte Carlo and Bayesian approaches. Features: 1. Extensive use of modern open source software (R). 2. Many code examples are provided. 3. The uncertainty analyses conform to accepted professional standards (ASME). 4. The book is self-contained and includes all necessary material including chapters on statistics and programming in R. Benjamin D. Shaw is a professor in the Mechanical and Aerospace Engineering Department at the University of California, Davis. His research interests are primarily in experimental and theoretical aspects of combustion. Along with other courses, he has taught undergraduate and graduate courses on engineering experimentation and uncertainty analysis. He has published widely in archival journals and became an ASME Fellow in 2003.


Uncertainty Analysis of Experimental Data with R

Uncertainty Analysis of Experimental Data with R

Author: Benjamin D. Shaw

Publisher:

Published: 2017

Total Pages: 195

ISBN-13: 9781315366715

DOWNLOAD EBOOK

""This would be an excellent book for undergraduate, graduate and beyond ... The style of writing is easy to read and the author does a good job of adding humor in places. The integration of basic programming in R with the data that is collected for any experiment provides a powerful platform for analysis of data ... having the understanding of data analysis that this book offers will really help researchers examine their data and consider its value from multiple perspectives - and this applies to people who have small AND large data sets alike! This book also helps people use a free and basic software system for processing and plotting simple to complex functions." Michelle Pantoya, Texas Tech UniversityMeasurements of quantities that vary in a continuous fashion, e.g., the pressure of a gas, cannot be measured exactly and there will always be some uncertainty with these measured values, so it is vital for researchers to be able to quantify this data. Uncertainty Analysis of Experimental Data with R covers methods for evaluation of uncertainties in experimental data, as well as predictions made using these data, with implementation in R. The books discusses both basic and more complex methods including linear regression, nonlinear regression, and kernel smoothing curve fits, as well as Taylor Series, Monte Carlo and Bayesian approaches. Features:1. Extensive use of modern open source software (R).2. Many code examples are provided.3. The uncertainty analyses conform to accepted professional standards (ASME).4. The book is self-contained and includes all necessary material including chapters on statistics and programming in R. Benjamin D. Shaw is a professor in the Mechanical and Aerospace Engineering Department at the University of California, Davis. His research interests are primarily in experimental and theoretical aspects of combustion. Along with other courses, he has taught undergraduate and graduate courses on engineering experimentation and uncertainty analysis. He has published widely in archival journals and became an ASME Fellow in 2003.?"--Provided by publisher.


Book Synopsis Uncertainty Analysis of Experimental Data with R by : Benjamin D. Shaw

Download or read book Uncertainty Analysis of Experimental Data with R written by Benjamin D. Shaw and published by . This book was released on 2017 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: ""This would be an excellent book for undergraduate, graduate and beyond ... The style of writing is easy to read and the author does a good job of adding humor in places. The integration of basic programming in R with the data that is collected for any experiment provides a powerful platform for analysis of data ... having the understanding of data analysis that this book offers will really help researchers examine their data and consider its value from multiple perspectives - and this applies to people who have small AND large data sets alike! This book also helps people use a free and basic software system for processing and plotting simple to complex functions." Michelle Pantoya, Texas Tech UniversityMeasurements of quantities that vary in a continuous fashion, e.g., the pressure of a gas, cannot be measured exactly and there will always be some uncertainty with these measured values, so it is vital for researchers to be able to quantify this data. Uncertainty Analysis of Experimental Data with R covers methods for evaluation of uncertainties in experimental data, as well as predictions made using these data, with implementation in R. The books discusses both basic and more complex methods including linear regression, nonlinear regression, and kernel smoothing curve fits, as well as Taylor Series, Monte Carlo and Bayesian approaches. Features:1. Extensive use of modern open source software (R).2. Many code examples are provided.3. The uncertainty analyses conform to accepted professional standards (ASME).4. The book is self-contained and includes all necessary material including chapters on statistics and programming in R. Benjamin D. Shaw is a professor in the Mechanical and Aerospace Engineering Department at the University of California, Davis. His research interests are primarily in experimental and theoretical aspects of combustion. Along with other courses, he has taught undergraduate and graduate courses on engineering experimentation and uncertainty analysis. He has published widely in archival journals and became an ASME Fellow in 2003.?"--Provided by publisher.


Data Reduction and Error Analysis for the Physical Sciences

Data Reduction and Error Analysis for the Physical Sciences

Author: Philip R. Bevington

Publisher: McGraw-Hill Science, Engineering & Mathematics

Published: 1992

Total Pages: 362

ISBN-13:

DOWNLOAD EBOOK

This book is designed as a laboratory companion, student textbook or reference book for professional scientists. The text is for use in one-term numerical analysis, data and error analysis, or computer methods courses, or for laboratory use. It is for the sophomore-junior level, and calculus is a prerequisite. The new edition includes applications for PC use.


Book Synopsis Data Reduction and Error Analysis for the Physical Sciences by : Philip R. Bevington

Download or read book Data Reduction and Error Analysis for the Physical Sciences written by Philip R. Bevington and published by McGraw-Hill Science, Engineering & Mathematics. This book was released on 1992 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is designed as a laboratory companion, student textbook or reference book for professional scientists. The text is for use in one-term numerical analysis, data and error analysis, or computer methods courses, or for laboratory use. It is for the sophomore-junior level, and calculus is a prerequisite. The new edition includes applications for PC use.


An Introduction to Error Analysis

An Introduction to Error Analysis

Author: John Robert Taylor

Publisher: Univ Science Books

Published: 1997-01-01

Total Pages: 327

ISBN-13: 9780935702422

DOWNLOAD EBOOK

Problems after each chapter


Book Synopsis An Introduction to Error Analysis by : John Robert Taylor

Download or read book An Introduction to Error Analysis written by John Robert Taylor and published by Univ Science Books. This book was released on 1997-01-01 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: Problems after each chapter


Experimental Uncertainty Analysis: A Textbook for Science and Engineering Students

Experimental Uncertainty Analysis: A Textbook for Science and Engineering Students

Author: Supreet Singh Bahga

Publisher: Supreet Singh Bahga

Published: 2021-07-06

Total Pages: 186

ISBN-13: 1636402321

DOWNLOAD EBOOK

Uncertainties are inevitable in any experimental measurement. Therefore, it is essential for science and engineering graduates to design and develop reliable experiments and estimate the uncertainty in the measurements. This book describes the methods and application of uncertainty analysis during the planning, data analysis, and reporting stages of an experiment. This book is aimed at postgraduate and advanced undergraduate students of various branches of science and engineering. The book teaches methods for estimating random and systematic uncertainties and combining them to determine the overall uncertainty in a measurement. In addition, the method for propagating measurement uncertainties in the calculated result is discussed. The book also discusses methods of reducing the uncertainties through proper instrumentation, data acquisition, and experiment planning. This book provides detailed background and assumptions underlying the uncertainty analysis techniques for the reader to understand their applicability. Various solved examples are provided to demonstrate the application of the uncertainty analysis techniques. The exercises at the end of the chapters have been chosen carefully to reinforce the concepts discussed in the text.


Book Synopsis Experimental Uncertainty Analysis: A Textbook for Science and Engineering Students by : Supreet Singh Bahga

Download or read book Experimental Uncertainty Analysis: A Textbook for Science and Engineering Students written by Supreet Singh Bahga and published by Supreet Singh Bahga. This book was released on 2021-07-06 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: Uncertainties are inevitable in any experimental measurement. Therefore, it is essential for science and engineering graduates to design and develop reliable experiments and estimate the uncertainty in the measurements. This book describes the methods and application of uncertainty analysis during the planning, data analysis, and reporting stages of an experiment. This book is aimed at postgraduate and advanced undergraduate students of various branches of science and engineering. The book teaches methods for estimating random and systematic uncertainties and combining them to determine the overall uncertainty in a measurement. In addition, the method for propagating measurement uncertainties in the calculated result is discussed. The book also discusses methods of reducing the uncertainties through proper instrumentation, data acquisition, and experiment planning. This book provides detailed background and assumptions underlying the uncertainty analysis techniques for the reader to understand their applicability. Various solved examples are provided to demonstrate the application of the uncertainty analysis techniques. The exercises at the end of the chapters have been chosen carefully to reinforce the concepts discussed in the text.


Experimental Methods for Science and Engineering Students

Experimental Methods for Science and Engineering Students

Author: Les Kirkup

Publisher: Cambridge University Press

Published: 2019-09-05

Total Pages: 239

ISBN-13: 1108418465

DOWNLOAD EBOOK

An overview of experimental methods providing practical advice to students seeking guidance with their experimental work.


Book Synopsis Experimental Methods for Science and Engineering Students by : Les Kirkup

Download or read book Experimental Methods for Science and Engineering Students written by Les Kirkup and published by Cambridge University Press. This book was released on 2019-09-05 with total page 239 pages. Available in PDF, EPUB and Kindle. Book excerpt: An overview of experimental methods providing practical advice to students seeking guidance with their experimental work.


Analysis of Experimental Data in Science and Technology

Analysis of Experimental Data in Science and Technology

Author: Andrzej Zięba

Publisher: Cambridge Scholars Publishing

Published: 2023-09-26

Total Pages: 400

ISBN-13: 1527504492

DOWNLOAD EBOOK

This textbook presents methods of data analysis and uncertainty estimation based on classical statistics whilst including the use of robust statistics, Monte Carlo modelling, informational criteria, and non-statistical methods. Related computer programs and their creative use are also discussed, without reference to specific packages. The book contains one hundred illustrations and numerous examples using real-world data, from a student lab to the latest scientific results. It will appeal to students, scientists, engineers, metrologists, and everyone interested in processing measurement results.


Book Synopsis Analysis of Experimental Data in Science and Technology by : Andrzej Zięba

Download or read book Analysis of Experimental Data in Science and Technology written by Andrzej Zięba and published by Cambridge Scholars Publishing. This book was released on 2023-09-26 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook presents methods of data analysis and uncertainty estimation based on classical statistics whilst including the use of robust statistics, Monte Carlo modelling, informational criteria, and non-statistical methods. Related computer programs and their creative use are also discussed, without reference to specific packages. The book contains one hundred illustrations and numerous examples using real-world data, from a student lab to the latest scientific results. It will appeal to students, scientists, engineers, metrologists, and everyone interested in processing measurement results.


The Uncertainty in Physical Measurements

The Uncertainty in Physical Measurements

Author: Paolo Fornasini

Publisher: Springer Science & Business Media

Published: 2008-09-18

Total Pages: 291

ISBN-13: 0387786503

DOWNLOAD EBOOK

The scienti c method is based on the measurement of di erent physical qu- tities and the search for relations between their values. All measured values of physical quantities are, however, a ected by uncertainty. Understanding the origin of uncertainty, evaluating its extent, and suitably taking it into account in data analysis, are fundamental steps for assessing the global accuracy of physical laws and the degree of reliability of their technological applications. The introduction to uncertainty evaluation and data analysis procedures is generally made in laboratory courses for freshmen. During my long-lasting teaching experience, I had the feeling of some sort of gap between the ava- able tutorial textbooks, and the specialized monographs. The present work aims at lling this gap, and has been tested and modi ed through a feedback interaction with my students for several years. I have tried to maintain as much as possible a tutorial approach, that, starting from a phenomenolo- cal introduction, progressively leads to an accurate de nition of uncertainty and to some of the most common procedures of data analysis, facilitating the access to advanced monographs. This book is mainly addressed to - dergraduate students, but can be a useful reference for researchers and for secondary school teachers. The book is divided into three parts and a series of appendices. Part I is devoted to a phenomenological introduction to measurement and uncertainty. In Chap.


Book Synopsis The Uncertainty in Physical Measurements by : Paolo Fornasini

Download or read book The Uncertainty in Physical Measurements written by Paolo Fornasini and published by Springer Science & Business Media. This book was released on 2008-09-18 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: The scienti c method is based on the measurement of di erent physical qu- tities and the search for relations between their values. All measured values of physical quantities are, however, a ected by uncertainty. Understanding the origin of uncertainty, evaluating its extent, and suitably taking it into account in data analysis, are fundamental steps for assessing the global accuracy of physical laws and the degree of reliability of their technological applications. The introduction to uncertainty evaluation and data analysis procedures is generally made in laboratory courses for freshmen. During my long-lasting teaching experience, I had the feeling of some sort of gap between the ava- able tutorial textbooks, and the specialized monographs. The present work aims at lling this gap, and has been tested and modi ed through a feedback interaction with my students for several years. I have tried to maintain as much as possible a tutorial approach, that, starting from a phenomenolo- cal introduction, progressively leads to an accurate de nition of uncertainty and to some of the most common procedures of data analysis, facilitating the access to advanced monographs. This book is mainly addressed to - dergraduate students, but can be a useful reference for researchers and for secondary school teachers. The book is divided into three parts and a series of appendices. Part I is devoted to a phenomenological introduction to measurement and uncertainty. In Chap.


A Student's Guide to Data and Error Analysis

A Student's Guide to Data and Error Analysis

Author: Herman J. C. Berendsen

Publisher: Cambridge University Press

Published: 2011-04-07

Total Pages: 239

ISBN-13: 1139497855

DOWNLOAD EBOOK

All students taking laboratory courses within the physical sciences and engineering will benefit from this book, whilst researchers will find it an invaluable reference. This concise, practical guide brings the reader up-to-speed on the proper handling and presentation of scientific data and its inaccuracies. It covers all the vital topics with practical guidelines, computer programs (in Python), and recipes for handling experimental errors and reporting experimental data. In addition to the essentials, it also provides further background material for advanced readers who want to understand how the methods work. Plenty of examples, exercises and solutions are provided to aid and test understanding, whilst useful data, tables and formulas are compiled in a handy section for easy reference.


Book Synopsis A Student's Guide to Data and Error Analysis by : Herman J. C. Berendsen

Download or read book A Student's Guide to Data and Error Analysis written by Herman J. C. Berendsen and published by Cambridge University Press. This book was released on 2011-04-07 with total page 239 pages. Available in PDF, EPUB and Kindle. Book excerpt: All students taking laboratory courses within the physical sciences and engineering will benefit from this book, whilst researchers will find it an invaluable reference. This concise, practical guide brings the reader up-to-speed on the proper handling and presentation of scientific data and its inaccuracies. It covers all the vital topics with practical guidelines, computer programs (in Python), and recipes for handling experimental errors and reporting experimental data. In addition to the essentials, it also provides further background material for advanced readers who want to understand how the methods work. Plenty of examples, exercises and solutions are provided to aid and test understanding, whilst useful data, tables and formulas are compiled in a handy section for easy reference.


Uncertainty Analysis for Engineers and Scientists

Uncertainty Analysis for Engineers and Scientists

Author: Faith A. Morrison

Publisher: Cambridge University Press

Published: 2021-01-07

Total Pages: 389

ISBN-13: 1108478352

DOWNLOAD EBOOK

Build the skills for determining appropriate error limits for quantities that matter with this essential toolkit. Understand how to handle a complete project and how uncertainty enters into various steps. Provides a systematic, worksheet-based process to determine error limits on measured quantities, and all likely sources of uncertainty are explored, measured or estimated. Features instructions on how to carry out error analysis using Excel and MATLAB®, making previously tedious calculations easy. Whether you are new to the sciences or an experienced engineer, this useful resource provides a practical approach to performing error analysis. Suitable as a text for a junior or senior level laboratory course in aerospace, chemical and mechanical engineering, and for professionals.


Book Synopsis Uncertainty Analysis for Engineers and Scientists by : Faith A. Morrison

Download or read book Uncertainty Analysis for Engineers and Scientists written by Faith A. Morrison and published by Cambridge University Press. This book was released on 2021-01-07 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build the skills for determining appropriate error limits for quantities that matter with this essential toolkit. Understand how to handle a complete project and how uncertainty enters into various steps. Provides a systematic, worksheet-based process to determine error limits on measured quantities, and all likely sources of uncertainty are explored, measured or estimated. Features instructions on how to carry out error analysis using Excel and MATLAB®, making previously tedious calculations easy. Whether you are new to the sciences or an experienced engineer, this useful resource provides a practical approach to performing error analysis. Suitable as a text for a junior or senior level laboratory course in aerospace, chemical and mechanical engineering, and for professionals.