Using R to Unlock the Value of Big Data: Big Data Analytics with Oracle R Enterprise and Oracle R Connector for Hadoop

Using R to Unlock the Value of Big Data: Big Data Analytics with Oracle R Enterprise and Oracle R Connector for Hadoop

Author: Mark Hornick

Publisher: McGraw Hill Professional

Published: 2013-06-14

Total Pages: 83

ISBN-13: 0071826270

DOWNLOAD EBOOK

The Oracle Press Guide to Big Data Analytics using R Cowritten by members of the Big Data team at Oracle, this Oracle Press book focuses on analyzing data with R while making it scalable using Oracle’s R technologies. Using R to Unlock the Value of Big Data provides an introduction to open source R and describes issues with traditional R and database interaction. The book then offers in-depth coverage of Oracle’s strategic R offerings: Oracle R Enterprise, Oracle R Distribution, ROracle, and Oracle R Connector for Hadoop. You can practice your new skills using the end-of-chapter exercises.


Book Synopsis Using R to Unlock the Value of Big Data: Big Data Analytics with Oracle R Enterprise and Oracle R Connector for Hadoop by : Mark Hornick

Download or read book Using R to Unlock the Value of Big Data: Big Data Analytics with Oracle R Enterprise and Oracle R Connector for Hadoop written by Mark Hornick and published by McGraw Hill Professional. This book was released on 2013-06-14 with total page 83 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Oracle Press Guide to Big Data Analytics using R Cowritten by members of the Big Data team at Oracle, this Oracle Press book focuses on analyzing data with R while making it scalable using Oracle’s R technologies. Using R to Unlock the Value of Big Data provides an introduction to open source R and describes issues with traditional R and database interaction. The book then offers in-depth coverage of Oracle’s strategic R offerings: Oracle R Enterprise, Oracle R Distribution, ROracle, and Oracle R Connector for Hadoop. You can practice your new skills using the end-of-chapter exercises.


Fundamentals of Big Data Analytics

Fundamentals of Big Data Analytics

Author: Dr.T.Vijaya Saradhi

Publisher: GCS PUBLISHERS

Published: 2022-05-02

Total Pages: 263

ISBN-13: 939430438X

DOWNLOAD EBOOK

Fundamentals of Big Data Analytics written by Dr.Thomman Vijaya SaradhiDr. Syed Azahad Mr .Sreejith R, Dr. Sreekumar Narayanan


Book Synopsis Fundamentals of Big Data Analytics by : Dr.T.Vijaya Saradhi

Download or read book Fundamentals of Big Data Analytics written by Dr.T.Vijaya Saradhi and published by GCS PUBLISHERS. This book was released on 2022-05-02 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals of Big Data Analytics written by Dr.Thomman Vijaya SaradhiDr. Syed Azahad Mr .Sreejith R, Dr. Sreekumar Narayanan


Modern Approaches for Intelligent Information and Database Systems

Modern Approaches for Intelligent Information and Database Systems

Author: Andrzej Sieminski

Publisher: Springer

Published: 2018-02-23

Total Pages: 521

ISBN-13: 3319760815

DOWNLOAD EBOOK

This book offers a unique blend of reports on both theoretical models and their applications in the area of Intelligent Information and Database Systems. The reports cover a broad range of research topics, including advanced learning techniques, knowledge engineering, Natural Language Processing (NLP), decision support systems, Internet of things (IoT), computer vision, and tools and techniques for Intelligent Information Systems. They are extended versions of papers presented at the ACIIDS 2018 conference (10th Asian Conference on Intelligent Information and Database Systems), which was held in Dong Hoi City, Vietnam on 19–21 March 2018. What all researchers and students of computer science need is a state-of-the-art report on the latest trends in their respective areas of interest. Over the years, researchers have proposed increasingly complex theoretical models, which provide the theoretical basis for numerous applications. The applications, in turn, have a profound influence on virtually every aspect of human activities, while also allowing us to validate the underlying theoretical concepts.


Book Synopsis Modern Approaches for Intelligent Information and Database Systems by : Andrzej Sieminski

Download or read book Modern Approaches for Intelligent Information and Database Systems written by Andrzej Sieminski and published by Springer. This book was released on 2018-02-23 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a unique blend of reports on both theoretical models and their applications in the area of Intelligent Information and Database Systems. The reports cover a broad range of research topics, including advanced learning techniques, knowledge engineering, Natural Language Processing (NLP), decision support systems, Internet of things (IoT), computer vision, and tools and techniques for Intelligent Information Systems. They are extended versions of papers presented at the ACIIDS 2018 conference (10th Asian Conference on Intelligent Information and Database Systems), which was held in Dong Hoi City, Vietnam on 19–21 March 2018. What all researchers and students of computer science need is a state-of-the-art report on the latest trends in their respective areas of interest. Over the years, researchers have proposed increasingly complex theoretical models, which provide the theoretical basis for numerous applications. The applications, in turn, have a profound influence on virtually every aspect of human activities, while also allowing us to validate the underlying theoretical concepts.


Oracle R Enterprise: Harnessing the Power of R in Oracle Database

Oracle R Enterprise: Harnessing the Power of R in Oracle Database

Author: Brendan Tierney

Publisher: McGraw Hill Professional

Published: 2016-11-04

Total Pages: 253

ISBN-13: 1259585646

DOWNLOAD EBOOK

Master the Big Data Capabilities of Oracle R Enterprise Effectively manage your enterprise’s big data and keep complex processes running smoothly using the hands-on information contained in this Oracle Press guide. Oracle R Enterprise: Harnessing the Power of R in Oracle Database shows, step-by-step, how to create and execute large-scale predictive analytics and maintain superior performance. Discover how to explore and prepare your data, accurately model business processes, generate sophisticated graphics, and write and deploy powerful scripts. You will also find out how to effectively incorporate Oracle R Enterprise features in APEX applications, OBIEE dashboards, and Apache Hadoop systems. Learn to: • Install, configure, and administer Oracle R Enterprise • Establish connections and move data to the database • Create Oracle R Enterprise packages and functions • Use the R language to work with data in Oracle Database • Build models using ODM, ORE, and other algorithms • Develop and deploy R scripts and use the R script repository • Execute embedded R scripts and employ ORE SQL API functions • Map and manipulate data using Oracle R Advanced Analytics for Hadoop • Use ORE in Oracle Data Miner, OBIEE, and other applications


Book Synopsis Oracle R Enterprise: Harnessing the Power of R in Oracle Database by : Brendan Tierney

Download or read book Oracle R Enterprise: Harnessing the Power of R in Oracle Database written by Brendan Tierney and published by McGraw Hill Professional. This book was released on 2016-11-04 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master the Big Data Capabilities of Oracle R Enterprise Effectively manage your enterprise’s big data and keep complex processes running smoothly using the hands-on information contained in this Oracle Press guide. Oracle R Enterprise: Harnessing the Power of R in Oracle Database shows, step-by-step, how to create and execute large-scale predictive analytics and maintain superior performance. Discover how to explore and prepare your data, accurately model business processes, generate sophisticated graphics, and write and deploy powerful scripts. You will also find out how to effectively incorporate Oracle R Enterprise features in APEX applications, OBIEE dashboards, and Apache Hadoop systems. Learn to: • Install, configure, and administer Oracle R Enterprise • Establish connections and move data to the database • Create Oracle R Enterprise packages and functions • Use the R language to work with data in Oracle Database • Build models using ODM, ORE, and other algorithms • Develop and deploy R scripts and use the R script repository • Execute embedded R scripts and employ ORE SQL API functions • Map and manipulate data using Oracle R Advanced Analytics for Hadoop • Use ORE in Oracle Data Miner, OBIEE, and other applications


Oracle Big Data Handbook

Oracle Big Data Handbook

Author: Tom Plunkett

Publisher: McGraw Hill Professional

Published: 2013-09-25

Total Pages: 467

ISBN-13: 0071827269

DOWNLOAD EBOOK

"Cowritten by members of Oracle's big data team, [this book] provides complete coverage of Oracle's comprehensive, integrated set of products for acquiring, organizing, analyzing, and leveraging unstructured data. The book discusses the strategies and technologies essential for a successful big data implementation, including Apache Hadoop, Oracle Big Data Appliance, Oracle Big Data Connectors, Oracle NoSQL Database, Oracle Endeca, Oracle Advanced Analytics, and Oracle's open source R offerings"--Page 4 of cover.


Book Synopsis Oracle Big Data Handbook by : Tom Plunkett

Download or read book Oracle Big Data Handbook written by Tom Plunkett and published by McGraw Hill Professional. This book was released on 2013-09-25 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Cowritten by members of Oracle's big data team, [this book] provides complete coverage of Oracle's comprehensive, integrated set of products for acquiring, organizing, analyzing, and leveraging unstructured data. The book discusses the strategies and technologies essential for a successful big data implementation, including Apache Hadoop, Oracle Big Data Appliance, Oracle Big Data Connectors, Oracle NoSQL Database, Oracle Endeca, Oracle Advanced Analytics, and Oracle's open source R offerings"--Page 4 of cover.


Data Science Using Oracle Data Miner and Oracle R Enterprise

Data Science Using Oracle Data Miner and Oracle R Enterprise

Author: Sibanjan Das

Publisher: Apress

Published: 2016-12-22

Total Pages: 300

ISBN-13: 1484226143

DOWNLOAD EBOOK

Automate the predictive analytics process using Oracle Data Miner and Oracle R Enterprise. This book talks about how both these technologies can provide a framework for in-database predictive analytics. You'll see a unified architecture and embedded workflow to automate various analytics steps such as data preprocessing, model creation, and storing final model output to tables. You'll take a deep dive into various statistical models commonly used in businesses and how they can be automated for predictive analytics using various SQL, PLSQL, ORE, ODM, and native R packages. You'll get to know various options available in the ODM workflow for driving automation. Also, you'll get an understanding of various ways to integrate ODM packages, ORE, and native R packages using PLSQL for automating the processes. Data Science Automation Using Oracle Data Miner and Oracle R Enterprise starts with an introduction to business analytics, covering why automation is necessary and the level of complexity in automation at each analytic stage. Then, it focuses on how predictive analytics can be automated by using Oracle Data Miner and Oracle R Enterprise. Also, it explains when and why ODM and ORE are to be used together for automation. The subsequent chapters detail various statistical processes used for predictive analytics such as calculating attribute importance, clustering methods, regression analysis, classification techniques, ensemble models, and neural networks. In these chapters you will also get to understand the automation processes for each of these statistical processes using ODM and ORE along with their application in a real-life business use case. What you'll learn Discover the functionality of Oracle Data Miner and Oracle R Enterprise Gain methods to perform in-database predictive analytics Use Oracle's SQL and PLSQL APIs for building analytical solutions Acquire knowledge of common and widely-used business statistical analysis techniques Who this book is for IT executives, BI architects, Oracle architects and developers, R users and statisticians.


Book Synopsis Data Science Using Oracle Data Miner and Oracle R Enterprise by : Sibanjan Das

Download or read book Data Science Using Oracle Data Miner and Oracle R Enterprise written by Sibanjan Das and published by Apress. This book was released on 2016-12-22 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Automate the predictive analytics process using Oracle Data Miner and Oracle R Enterprise. This book talks about how both these technologies can provide a framework for in-database predictive analytics. You'll see a unified architecture and embedded workflow to automate various analytics steps such as data preprocessing, model creation, and storing final model output to tables. You'll take a deep dive into various statistical models commonly used in businesses and how they can be automated for predictive analytics using various SQL, PLSQL, ORE, ODM, and native R packages. You'll get to know various options available in the ODM workflow for driving automation. Also, you'll get an understanding of various ways to integrate ODM packages, ORE, and native R packages using PLSQL for automating the processes. Data Science Automation Using Oracle Data Miner and Oracle R Enterprise starts with an introduction to business analytics, covering why automation is necessary and the level of complexity in automation at each analytic stage. Then, it focuses on how predictive analytics can be automated by using Oracle Data Miner and Oracle R Enterprise. Also, it explains when and why ODM and ORE are to be used together for automation. The subsequent chapters detail various statistical processes used for predictive analytics such as calculating attribute importance, clustering methods, regression analysis, classification techniques, ensemble models, and neural networks. In these chapters you will also get to understand the automation processes for each of these statistical processes using ODM and ORE along with their application in a real-life business use case. What you'll learn Discover the functionality of Oracle Data Miner and Oracle R Enterprise Gain methods to perform in-database predictive analytics Use Oracle's SQL and PLSQL APIs for building analytical solutions Acquire knowledge of common and widely-used business statistical analysis techniques Who this book is for IT executives, BI architects, Oracle architects and developers, R users and statisticians.


Big Data Analytics with R and Hadoop

Big Data Analytics with R and Hadoop

Author: Vignesh Prajapati

Publisher:

Published: 2013

Total Pages: 0

ISBN-13: 9781782163282

DOWNLOAD EBOOK

Big Data Analytics with R and Hadoop is a tutorial style book that focuses on all the powerful big data tasks that can be achieved by integrating R and Hadoop.This book is ideal for R developers who are looking for a way to perform big data analytics with Hadoop. This book is also aimed at those who know Hadoop and want to build some intelligent applications over Big data with R packages. It would be helpful if readers have basic knowledge of R.


Book Synopsis Big Data Analytics with R and Hadoop by : Vignesh Prajapati

Download or read book Big Data Analytics with R and Hadoop written by Vignesh Prajapati and published by . This book was released on 2013 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Big Data Analytics with R and Hadoop is a tutorial style book that focuses on all the powerful big data tasks that can be achieved by integrating R and Hadoop.This book is ideal for R developers who are looking for a way to perform big data analytics with Hadoop. This book is also aimed at those who know Hadoop and want to build some intelligent applications over Big data with R packages. It would be helpful if readers have basic knowledge of R.


Big Data Analytics with R

Big Data Analytics with R

Author: Simon Walkowiak

Publisher: Packt Publishing Ltd

Published: 2016-07-29

Total Pages: 498

ISBN-13: 1786463725

DOWNLOAD EBOOK

Utilize R to uncover hidden patterns in your Big Data About This Book Perform computational analyses on Big Data to generate meaningful results Get a practical knowledge of R programming language while working on Big Data platforms like Hadoop, Spark, H2O and SQL/NoSQL databases, Explore fast, streaming, and scalable data analysis with the most cutting-edge technologies in the market Who This Book Is For This book is intended for Data Analysts, Scientists, Data Engineers, Statisticians, Researchers, who want to integrate R with their current or future Big Data workflows. It is assumed that readers have some experience in data analysis and understanding of data management and algorithmic processing of large quantities of data, however they may lack specific skills related to R. What You Will Learn Learn about current state of Big Data processing using R programming language and its powerful statistical capabilities Deploy Big Data analytics platforms with selected Big Data tools supported by R in a cost-effective and time-saving manner Apply the R language to real-world Big Data problems on a multi-node Hadoop cluster, e.g. electricity consumption across various socio-demographic indicators and bike share scheme usage Explore the compatibility of R with Hadoop, Spark, SQL and NoSQL databases, and H2O platform In Detail Big Data analytics is the process of examining large and complex data sets that often exceed the computational capabilities. R is a leading programming language of data science, consisting of powerful functions to tackle all problems related to Big Data processing. The book will begin with a brief introduction to the Big Data world and its current industry standards. With introduction to the R language and presenting its development, structure, applications in real world, and its shortcomings. Book will progress towards revision of major R functions for data management and transformations. Readers will be introduce to Cloud based Big Data solutions (e.g. Amazon EC2 instances and Amazon RDS, Microsoft Azure and its HDInsight clusters) and also provide guidance on R connectivity with relational and non-relational databases such as MongoDB and HBase etc. It will further expand to include Big Data tools such as Apache Hadoop ecosystem, HDFS and MapReduce frameworks. Also other R compatible tools such as Apache Spark, its machine learning library Spark MLlib, as well as H2O. Style and approach This book will serve as a practical guide to tackling Big Data problems using R programming language and its statistical environment. Each section of the book will present you with concise and easy-to-follow steps on how to process, transform and analyse large data sets.


Book Synopsis Big Data Analytics with R by : Simon Walkowiak

Download or read book Big Data Analytics with R written by Simon Walkowiak and published by Packt Publishing Ltd. This book was released on 2016-07-29 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: Utilize R to uncover hidden patterns in your Big Data About This Book Perform computational analyses on Big Data to generate meaningful results Get a practical knowledge of R programming language while working on Big Data platforms like Hadoop, Spark, H2O and SQL/NoSQL databases, Explore fast, streaming, and scalable data analysis with the most cutting-edge technologies in the market Who This Book Is For This book is intended for Data Analysts, Scientists, Data Engineers, Statisticians, Researchers, who want to integrate R with their current or future Big Data workflows. It is assumed that readers have some experience in data analysis and understanding of data management and algorithmic processing of large quantities of data, however they may lack specific skills related to R. What You Will Learn Learn about current state of Big Data processing using R programming language and its powerful statistical capabilities Deploy Big Data analytics platforms with selected Big Data tools supported by R in a cost-effective and time-saving manner Apply the R language to real-world Big Data problems on a multi-node Hadoop cluster, e.g. electricity consumption across various socio-demographic indicators and bike share scheme usage Explore the compatibility of R with Hadoop, Spark, SQL and NoSQL databases, and H2O platform In Detail Big Data analytics is the process of examining large and complex data sets that often exceed the computational capabilities. R is a leading programming language of data science, consisting of powerful functions to tackle all problems related to Big Data processing. The book will begin with a brief introduction to the Big Data world and its current industry standards. With introduction to the R language and presenting its development, structure, applications in real world, and its shortcomings. Book will progress towards revision of major R functions for data management and transformations. Readers will be introduce to Cloud based Big Data solutions (e.g. Amazon EC2 instances and Amazon RDS, Microsoft Azure and its HDInsight clusters) and also provide guidance on R connectivity with relational and non-relational databases such as MongoDB and HBase etc. It will further expand to include Big Data tools such as Apache Hadoop ecosystem, HDFS and MapReduce frameworks. Also other R compatible tools such as Apache Spark, its machine learning library Spark MLlib, as well as H2O. Style and approach This book will serve as a practical guide to tackling Big Data problems using R programming language and its statistical environment. Each section of the book will present you with concise and easy-to-follow steps on how to process, transform and analyse large data sets.


Trino: The Definitive Guide

Trino: The Definitive Guide

Author: Matt Fuller

Publisher: "O'Reilly Media, Inc."

Published: 2021-04-14

Total Pages: 310

ISBN-13: 1098107683

DOWNLOAD EBOOK

Perform fast interactive analytics against different data sources using the Trino high-performance distributed SQL query engine. With this practical guide, you'll learn how to conduct analytics on data where it lives, whether it's Hive, Cassandra, a relational database, or a proprietary data store. Analysts, software engineers, and production engineers will learn how to manage, use, and even develop with Trino. Initially developed by Facebook, open source Trino is now used by Netflix, Airbnb, LinkedIn, Twitter, Uber, and many other companies. Matt Fuller, Manfred Moser, and Martin Traverso show you how a single Trino query can combine data from multiple sources to allow for analytics across your entire organization. Get started: Explore Trino's use cases and learn about tools that will help you connect to Trino and query data Go deeper: Learn Trino's internal workings, including how to connect to and query data sources with support for SQL statements, operators, functions, and more Put Trino in production: Secure Trino, monitor workloads, tune queries, and connect more applications; learn how other organizations apply Trino


Book Synopsis Trino: The Definitive Guide by : Matt Fuller

Download or read book Trino: The Definitive Guide written by Matt Fuller and published by "O'Reilly Media, Inc.". This book was released on 2021-04-14 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Perform fast interactive analytics against different data sources using the Trino high-performance distributed SQL query engine. With this practical guide, you'll learn how to conduct analytics on data where it lives, whether it's Hive, Cassandra, a relational database, or a proprietary data store. Analysts, software engineers, and production engineers will learn how to manage, use, and even develop with Trino. Initially developed by Facebook, open source Trino is now used by Netflix, Airbnb, LinkedIn, Twitter, Uber, and many other companies. Matt Fuller, Manfred Moser, and Martin Traverso show you how a single Trino query can combine data from multiple sources to allow for analytics across your entire organization. Get started: Explore Trino's use cases and learn about tools that will help you connect to Trino and query data Go deeper: Learn Trino's internal workings, including how to connect to and query data sources with support for SQL statements, operators, functions, and more Put Trino in production: Secure Trino, monitor workloads, tune queries, and connect more applications; learn how other organizations apply Trino


Handbook of Research on Cloud Infrastructures for Big Data Analytics

Handbook of Research on Cloud Infrastructures for Big Data Analytics

Author: Raj, Pethuru

Publisher: IGI Global

Published: 2014-03-31

Total Pages: 592

ISBN-13: 1466658657

DOWNLOAD EBOOK

Clouds are being positioned as the next-generation consolidated, centralized, yet federated IT infrastructure for hosting all kinds of IT platforms and for deploying, maintaining, and managing a wider variety of personal, as well as professional applications and services. Handbook of Research on Cloud Infrastructures for Big Data Analytics focuses exclusively on the topic of cloud-sponsored big data analytics for creating flexible and futuristic organizations. This book helps researchers and practitioners, as well as business entrepreneurs, to make informed decisions and consider appropriate action to simplify and streamline the arduous journey towards smarter enterprises.


Book Synopsis Handbook of Research on Cloud Infrastructures for Big Data Analytics by : Raj, Pethuru

Download or read book Handbook of Research on Cloud Infrastructures for Big Data Analytics written by Raj, Pethuru and published by IGI Global. This book was released on 2014-03-31 with total page 592 pages. Available in PDF, EPUB and Kindle. Book excerpt: Clouds are being positioned as the next-generation consolidated, centralized, yet federated IT infrastructure for hosting all kinds of IT platforms and for deploying, maintaining, and managing a wider variety of personal, as well as professional applications and services. Handbook of Research on Cloud Infrastructures for Big Data Analytics focuses exclusively on the topic of cloud-sponsored big data analytics for creating flexible and futuristic organizations. This book helps researchers and practitioners, as well as business entrepreneurs, to make informed decisions and consider appropriate action to simplify and streamline the arduous journey towards smarter enterprises.