Wave Propagation in Electromagnetic Media

Wave Propagation in Electromagnetic Media

Author: Julian L. Davis

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 303

ISBN-13: 1461232848

DOWNLOAD EBOOK

This is the second work of a set of two volumes on the phenomena of wave propagation in nonreacting and reacting media. The first, entitled Wave Propagation in Solids and Fluids (published by Springer-Verlag in 1988), deals with wave phenomena in nonreacting media (solids and fluids). This book is concerned with wave propagation in reacting media-specifically, in electro magnetic materials. Since these volumes were designed to be relatively self contained, we have taken the liberty of adapting some of the pertinent material, especially in the theory of hyperbolic partial differential equations (concerned with electromagnetic wave propagation), variational methods, and Hamilton-Jacobi theory, to the phenomena of electromagnetic waves. The purpose of this volume is similar to that of the first, except that here we are dealing with electromagnetic waves. We attempt to present a clear and systematic account of the mathematical methods of wave phenomena in electromagnetic materials that will be readily accessible to physicists and engineers. The emphasis is on developing the necessary mathematical tech niques, and on showing how these methods of mathematical physics can be effective in unifying the physics of wave propagation in electromagnetic media. Chapter 1 presents the theory of time-varying electromagnetic fields, which involves a discussion of Faraday's laws, Maxwell's equations, and their appli cations to electromagnetic wave propagation under a variety of conditions.


Book Synopsis Wave Propagation in Electromagnetic Media by : Julian L. Davis

Download or read book Wave Propagation in Electromagnetic Media written by Julian L. Davis and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the second work of a set of two volumes on the phenomena of wave propagation in nonreacting and reacting media. The first, entitled Wave Propagation in Solids and Fluids (published by Springer-Verlag in 1988), deals with wave phenomena in nonreacting media (solids and fluids). This book is concerned with wave propagation in reacting media-specifically, in electro magnetic materials. Since these volumes were designed to be relatively self contained, we have taken the liberty of adapting some of the pertinent material, especially in the theory of hyperbolic partial differential equations (concerned with electromagnetic wave propagation), variational methods, and Hamilton-Jacobi theory, to the phenomena of electromagnetic waves. The purpose of this volume is similar to that of the first, except that here we are dealing with electromagnetic waves. We attempt to present a clear and systematic account of the mathematical methods of wave phenomena in electromagnetic materials that will be readily accessible to physicists and engineers. The emphasis is on developing the necessary mathematical tech niques, and on showing how these methods of mathematical physics can be effective in unifying the physics of wave propagation in electromagnetic media. Chapter 1 presents the theory of time-varying electromagnetic fields, which involves a discussion of Faraday's laws, Maxwell's equations, and their appli cations to electromagnetic wave propagation under a variety of conditions.


Wave Propagation in Solids and Fluids

Wave Propagation in Solids and Fluids

Author: Julian L. Davis

Publisher: Springer

Published: 1988-09-12

Total Pages: 386

ISBN-13: 9780387967394

DOWNLOAD EBOOK

The purpose of this volume is to present a clear and systematic account of the mathematical methods of wave phenomena in solids, gases, and water that will be readily accessible to physicists and engineers. The emphasis is on developing the necessary mathematical techniques, and on showing how these mathematical concepts can be effective in unifying the physics of wave propagation in a variety of physical settings: sound and shock waves in gases, water waves, and stress waves in solids. Nonlinear effects and asymptotic phenomena will be discussed. Wave propagation in continuous media (solid, liquid, or gas) has as its foundation the three basic conservation laws of physics: conservation of mass, momentum, and energy, which will be described in various sections of the book in their proper physical setting. These conservation laws are expressed either in the Lagrangian or the Eulerian representation depending on whether the boundaries are relatively fixed or moving. In any case, these laws of physics allow us to derive the "field equations" which are expressed as systems of partial differential equations. For wave propagation phenomena these equations are said to be "hyperbolic" and, in general, nonlinear in the sense of being "quasi linear" . We therefore attempt to determine the properties of a system of "quasi linear hyperbolic" partial differential equations which will allow us to calculate the displacement, velocity fields, etc.


Book Synopsis Wave Propagation in Solids and Fluids by : Julian L. Davis

Download or read book Wave Propagation in Solids and Fluids written by Julian L. Davis and published by Springer. This book was released on 1988-09-12 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this volume is to present a clear and systematic account of the mathematical methods of wave phenomena in solids, gases, and water that will be readily accessible to physicists and engineers. The emphasis is on developing the necessary mathematical techniques, and on showing how these mathematical concepts can be effective in unifying the physics of wave propagation in a variety of physical settings: sound and shock waves in gases, water waves, and stress waves in solids. Nonlinear effects and asymptotic phenomena will be discussed. Wave propagation in continuous media (solid, liquid, or gas) has as its foundation the three basic conservation laws of physics: conservation of mass, momentum, and energy, which will be described in various sections of the book in their proper physical setting. These conservation laws are expressed either in the Lagrangian or the Eulerian representation depending on whether the boundaries are relatively fixed or moving. In any case, these laws of physics allow us to derive the "field equations" which are expressed as systems of partial differential equations. For wave propagation phenomena these equations are said to be "hyperbolic" and, in general, nonlinear in the sense of being "quasi linear" . We therefore attempt to determine the properties of a system of "quasi linear hyperbolic" partial differential equations which will allow us to calculate the displacement, velocity fields, etc.


Introduction to Wave Propagation in Nonlinear Fluids and Solids

Introduction to Wave Propagation in Nonlinear Fluids and Solids

Author: D. S. Drumheller

Publisher: Cambridge University Press

Published: 1998-02-13

Total Pages: 546

ISBN-13: 9780521587464

DOWNLOAD EBOOK

Waves occur widely in nature and have innumerable commercial uses. Pressure waves are responsible for the transmission of speech, bow waves created by meteors can virtually ignite the earth's atmosphere, ultrasonic waves are used for medical imaging, and shock waves are used for the synthesis of new materials. This book provides a thorough, modern introduction to the study of linear and nonlinear waves. Beginning with fundamental concepts of motion, the book goes on to discuss linear and nonlinear mechanical waves, thermodynamics, and constitutive models. It covers gases, liquids, and solids as integral parts of the subject. Among the important areas of research and application are impact analysis, shock wave research, explosive detonation, nonlinear acoustics, and hypersonic aerodynamics. Graduate students, as well as professional engineers and applied physicists, will value this clear, comprehensive introduction to the study of wave phenomena.


Book Synopsis Introduction to Wave Propagation in Nonlinear Fluids and Solids by : D. S. Drumheller

Download or read book Introduction to Wave Propagation in Nonlinear Fluids and Solids written by D. S. Drumheller and published by Cambridge University Press. This book was released on 1998-02-13 with total page 546 pages. Available in PDF, EPUB and Kindle. Book excerpt: Waves occur widely in nature and have innumerable commercial uses. Pressure waves are responsible for the transmission of speech, bow waves created by meteors can virtually ignite the earth's atmosphere, ultrasonic waves are used for medical imaging, and shock waves are used for the synthesis of new materials. This book provides a thorough, modern introduction to the study of linear and nonlinear waves. Beginning with fundamental concepts of motion, the book goes on to discuss linear and nonlinear mechanical waves, thermodynamics, and constitutive models. It covers gases, liquids, and solids as integral parts of the subject. Among the important areas of research and application are impact analysis, shock wave research, explosive detonation, nonlinear acoustics, and hypersonic aerodynamics. Graduate students, as well as professional engineers and applied physicists, will value this clear, comprehensive introduction to the study of wave phenomena.


Stability and Wave Propagation in Fluids and Solids

Stability and Wave Propagation in Fluids and Solids

Author: Giovanni P. Galdi

Publisher: Springer

Published: 2014-10-08

Total Pages: 154

ISBN-13: 9783709130056

DOWNLOAD EBOOK

The content of the volume is constituted by four articles. The first concerns the theory of propagation of plane waves in elastic media. The second treats theoretically the linear, weakly non-linear, and non-linear stability of flows of a viscous incompressible fluid in a diverging channel. The third lecture investigates the mathematical properties of the equations governing the motion of a viscous incompressible second-grade fluid, such as existence, uniqueness of classical solutions and stability of steady-state flows. The last lecture provides some basic results on wave propagation in continuum models. The objective of this book is to emphasize and to compare the various aspects of interest which include the necessary mathematical background, constitutive theories for material of differential type, polarized and shock waves, and second sound in solids at low temperatures.


Book Synopsis Stability and Wave Propagation in Fluids and Solids by : Giovanni P. Galdi

Download or read book Stability and Wave Propagation in Fluids and Solids written by Giovanni P. Galdi and published by Springer. This book was released on 2014-10-08 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: The content of the volume is constituted by four articles. The first concerns the theory of propagation of plane waves in elastic media. The second treats theoretically the linear, weakly non-linear, and non-linear stability of flows of a viscous incompressible fluid in a diverging channel. The third lecture investigates the mathematical properties of the equations governing the motion of a viscous incompressible second-grade fluid, such as existence, uniqueness of classical solutions and stability of steady-state flows. The last lecture provides some basic results on wave propagation in continuum models. The objective of this book is to emphasize and to compare the various aspects of interest which include the necessary mathematical background, constitutive theories for material of differential type, polarized and shock waves, and second sound in solids at low temperatures.


Inhomogeneous Waves in Solids and Fluids

Inhomogeneous Waves in Solids and Fluids

Author: Giacomo Caviglia

Publisher: World Scientific

Published: 1992

Total Pages: 328

ISBN-13: 9789810208042

DOWNLOAD EBOOK

The book may be viewed as an introduction to time-harmonic waves in dissipative bodies, notably viscoelastic solids and fluids. The inhomogeneity of the waves, which is due to the fact that planes of constant phase are not parallel to planes of constant amplitude, is shown to be strictly related to the dissipativity of the medium. A preliminary analysis is performed on the propagation of inhomogeneous waves in unbounded media and of reflection and refraction at plane interfaces. Then emphasis is given to those features that are of significance for applications. In essence, they regard surface waves, scattering by (curved) obstacles, wave propagation in layered heterogeneous media, and ray methods. The pertinent mathematical techniques are discussed so as to make the book reasonably self-contained.


Book Synopsis Inhomogeneous Waves in Solids and Fluids by : Giacomo Caviglia

Download or read book Inhomogeneous Waves in Solids and Fluids written by Giacomo Caviglia and published by World Scientific. This book was released on 1992 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book may be viewed as an introduction to time-harmonic waves in dissipative bodies, notably viscoelastic solids and fluids. The inhomogeneity of the waves, which is due to the fact that planes of constant phase are not parallel to planes of constant amplitude, is shown to be strictly related to the dissipativity of the medium. A preliminary analysis is performed on the propagation of inhomogeneous waves in unbounded media and of reflection and refraction at plane interfaces. Then emphasis is given to those features that are of significance for applications. In essence, they regard surface waves, scattering by (curved) obstacles, wave propagation in layered heterogeneous media, and ray methods. The pertinent mathematical techniques are discussed so as to make the book reasonably self-contained.


The Rock Physics Handbook

The Rock Physics Handbook

Author: Gary Mavko

Publisher: Cambridge University Press

Published: 2020-01-09

Total Pages: 741

ISBN-13: 1108420265

DOWNLOAD EBOOK

Brings together widely scattered theoretical and laboratory rock physics relations critical for modelling and interpretation of geophysical data.


Book Synopsis The Rock Physics Handbook by : Gary Mavko

Download or read book The Rock Physics Handbook written by Gary Mavko and published by Cambridge University Press. This book was released on 2020-01-09 with total page 741 pages. Available in PDF, EPUB and Kindle. Book excerpt: Brings together widely scattered theoretical and laboratory rock physics relations critical for modelling and interpretation of geophysical data.


Stability and Wave Propagation in Fluids and Solids

Stability and Wave Propagation in Fluids and Solids

Author: International Centre for Mechanical Sciences

Publisher: Springer

Published: 1995-04-06

Total Pages: 168

ISBN-13:

DOWNLOAD EBOOK

The content of the volume is constituted by four articles. The first concerns the theory of propagation of plane waves in elastic media. The second treats theoretically the linear, weakly non-linear, and non-linear stability of flows of a viscous incompressible fluid in a diverging channel. The third lecture investigates the mathematical properties of the equations governing the motion of a viscous incompressible second-grade fluid, such as existence, uniqueness of classical solutions and stability of steady-state flows. The last lecture provides some basic results on wave propagation in continuum models. The objective of this book is to emphasize and to compare the various aspects of interest which include the necessary mathematical background, constitutive theories for material of differential type, polarized and shock waves, and second sound in solids at low temperatures.


Book Synopsis Stability and Wave Propagation in Fluids and Solids by : International Centre for Mechanical Sciences

Download or read book Stability and Wave Propagation in Fluids and Solids written by International Centre for Mechanical Sciences and published by Springer. This book was released on 1995-04-06 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: The content of the volume is constituted by four articles. The first concerns the theory of propagation of plane waves in elastic media. The second treats theoretically the linear, weakly non-linear, and non-linear stability of flows of a viscous incompressible fluid in a diverging channel. The third lecture investigates the mathematical properties of the equations governing the motion of a viscous incompressible second-grade fluid, such as existence, uniqueness of classical solutions and stability of steady-state flows. The last lecture provides some basic results on wave propagation in continuum models. The objective of this book is to emphasize and to compare the various aspects of interest which include the necessary mathematical background, constitutive theories for material of differential type, polarized and shock waves, and second sound in solids at low temperatures.


Wave Propagation in Fluids

Wave Propagation in Fluids

Author: Vincent Guinot

Publisher: John Wiley & Sons

Published: 2012-12-27

Total Pages: 394

ISBN-13: 1118587634

DOWNLOAD EBOOK

This second edition with four additional chapters presents the physical principles and solution techniques for transient propagation in fluid mechanics and hydraulics. The application domains vary including contaminant transport with or without sorption, the motion of immiscible hydrocarbons in aquifers, pipe transients, open channel and shallow water flow, and compressible gas dynamics. The mathematical formulation is covered from the angle of conservation laws, with an emphasis on multidimensional problems and discontinuous flows, such as steep fronts and shock waves. Finite difference-, finite volume- and finite element-based numerical methods (including discontinuous Galerkin techniques) are covered and applied to various physical fields. Additional chapters include the treatment of geometric source terms, as well as direct and adjoint sensitivity modeling for hyperbolic conservation laws. A concluding chapter is devoted to practical recommendations to the modeler. Application exercises with on-line solutions are proposed at the end of the chapters.


Book Synopsis Wave Propagation in Fluids by : Vincent Guinot

Download or read book Wave Propagation in Fluids written by Vincent Guinot and published by John Wiley & Sons. This book was released on 2012-12-27 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition with four additional chapters presents the physical principles and solution techniques for transient propagation in fluid mechanics and hydraulics. The application domains vary including contaminant transport with or without sorption, the motion of immiscible hydrocarbons in aquifers, pipe transients, open channel and shallow water flow, and compressible gas dynamics. The mathematical formulation is covered from the angle of conservation laws, with an emphasis on multidimensional problems and discontinuous flows, such as steep fronts and shock waves. Finite difference-, finite volume- and finite element-based numerical methods (including discontinuous Galerkin techniques) are covered and applied to various physical fields. Additional chapters include the treatment of geometric source terms, as well as direct and adjoint sensitivity modeling for hyperbolic conservation laws. A concluding chapter is devoted to practical recommendations to the modeler. Application exercises with on-line solutions are proposed at the end of the chapters.


Fundamentals of Shock Wave Propagation in Solids

Fundamentals of Shock Wave Propagation in Solids

Author: Lee Davison

Publisher: Springer Science & Business Media

Published: 2008-04-24

Total Pages: 439

ISBN-13: 3540745696

DOWNLOAD EBOOK

My intent in writing this book is to present an introduction to the thermo- chanical theory required to conduct research and pursue applications of shock physics in solid materials. Emphasis is on the range of moderate compression that can be produced by high-velocity impact or detonation of chemical exp- sives and in which elastoplastic responses are observed and simple equations of state are applicable. In the interest of simplicity, the presentation is restricted to plane waves producing uniaxial deformation. Although applications often - volve complex multidimensional deformation fields it is necessary to begin with the simpler case. This is also the most important case because it is the usual setting of experimental research. The presentation is also restricted to theories of material response that are simple enough to permit illustrative problems to be solved with minimal recourse to numerical analysis. The discussions are set in the context of established continuum-mechanical principles. I have endeavored to define the quantities encountered with some care and to provide equations in several convenient forms and in a way that lends itself to easy reference. Thermodynamic analysis plays an important role in continuum mechanics, and I have included a presentation of aspects of this subject that are particularly relevant to shock physics. The notation adopted is that conventional in expositions of modern continuum mechanics, insofar as possible, and variables are explained as they are encountered. Those experienced in shock physics may find some of the notation unconventional.


Book Synopsis Fundamentals of Shock Wave Propagation in Solids by : Lee Davison

Download or read book Fundamentals of Shock Wave Propagation in Solids written by Lee Davison and published by Springer Science & Business Media. This book was released on 2008-04-24 with total page 439 pages. Available in PDF, EPUB and Kindle. Book excerpt: My intent in writing this book is to present an introduction to the thermo- chanical theory required to conduct research and pursue applications of shock physics in solid materials. Emphasis is on the range of moderate compression that can be produced by high-velocity impact or detonation of chemical exp- sives and in which elastoplastic responses are observed and simple equations of state are applicable. In the interest of simplicity, the presentation is restricted to plane waves producing uniaxial deformation. Although applications often - volve complex multidimensional deformation fields it is necessary to begin with the simpler case. This is also the most important case because it is the usual setting of experimental research. The presentation is also restricted to theories of material response that are simple enough to permit illustrative problems to be solved with minimal recourse to numerical analysis. The discussions are set in the context of established continuum-mechanical principles. I have endeavored to define the quantities encountered with some care and to provide equations in several convenient forms and in a way that lends itself to easy reference. Thermodynamic analysis plays an important role in continuum mechanics, and I have included a presentation of aspects of this subject that are particularly relevant to shock physics. The notation adopted is that conventional in expositions of modern continuum mechanics, insofar as possible, and variables are explained as they are encountered. Those experienced in shock physics may find some of the notation unconventional.


Fundamentals of Shock Wave Propagation in Solids

Fundamentals of Shock Wave Propagation in Solids

Author: Lee Davison

Publisher: Springer Science & Business Media

Published: 2008-05-07

Total Pages: 439

ISBN-13: 3540745688

DOWNLOAD EBOOK

My intent in writing this book is to present an introduction to the thermo- chanical theory required to conduct research and pursue applications of shock physics in solid materials. Emphasis is on the range of moderate compression that can be produced by high-velocity impact or detonation of chemical exp- sives and in which elastoplastic responses are observed and simple equations of state are applicable. In the interest of simplicity, the presentation is restricted to plane waves producing uniaxial deformation. Although applications often - volve complex multidimensional deformation fields it is necessary to begin with the simpler case. This is also the most important case because it is the usual setting of experimental research. The presentation is also restricted to theories of material response that are simple enough to permit illustrative problems to be solved with minimal recourse to numerical analysis. The discussions are set in the context of established continuum-mechanical principles. I have endeavored to define the quantities encountered with some care and to provide equations in several convenient forms and in a way that lends itself to easy reference. Thermodynamic analysis plays an important role in continuum mechanics, and I have included a presentation of aspects of this subject that are particularly relevant to shock physics. The notation adopted is that conventional in expositions of modern continuum mechanics, insofar as possible, and variables are explained as they are encountered. Those experienced in shock physics may find some of the notation unconventional.


Book Synopsis Fundamentals of Shock Wave Propagation in Solids by : Lee Davison

Download or read book Fundamentals of Shock Wave Propagation in Solids written by Lee Davison and published by Springer Science & Business Media. This book was released on 2008-05-07 with total page 439 pages. Available in PDF, EPUB and Kindle. Book excerpt: My intent in writing this book is to present an introduction to the thermo- chanical theory required to conduct research and pursue applications of shock physics in solid materials. Emphasis is on the range of moderate compression that can be produced by high-velocity impact or detonation of chemical exp- sives and in which elastoplastic responses are observed and simple equations of state are applicable. In the interest of simplicity, the presentation is restricted to plane waves producing uniaxial deformation. Although applications often - volve complex multidimensional deformation fields it is necessary to begin with the simpler case. This is also the most important case because it is the usual setting of experimental research. The presentation is also restricted to theories of material response that are simple enough to permit illustrative problems to be solved with minimal recourse to numerical analysis. The discussions are set in the context of established continuum-mechanical principles. I have endeavored to define the quantities encountered with some care and to provide equations in several convenient forms and in a way that lends itself to easy reference. Thermodynamic analysis plays an important role in continuum mechanics, and I have included a presentation of aspects of this subject that are particularly relevant to shock physics. The notation adopted is that conventional in expositions of modern continuum mechanics, insofar as possible, and variables are explained as they are encountered. Those experienced in shock physics may find some of the notation unconventional.