Wave Turbulence

Wave Turbulence

Author: Sergey Nazarenko

Publisher: Springer Science & Business Media

Published: 2011-02-12

Total Pages: 287

ISBN-13: 3642159419

DOWNLOAD EBOOK

Wave Turbulence refers to the statistical theory of weakly nonlinear dispersive waves. There is a wide and growing spectrum of physical applications, ranging from sea waves, to plasma waves, to superfluid turbulence, to nonlinear optics and Bose-Einstein condensates. Beyond the fundamentals the book thus also covers new developments such as the interaction of random waves with coherent structures (vortices, solitons, wave breaks), inverse cascades leading to condensation and the transitions between weak and strong turbulence, turbulence intermittency as well as finite system size effects, such as “frozen” turbulence, discrete wave resonances and avalanche-type energy cascades. This book is an outgrow of several lectures courses held by the author and, as a result, written and structured rather as a graduate text than a monograph, with many exercises and solutions offered along the way. The present compact description primarily addresses students and non-specialist researchers wishing to enter and work in this field.


Book Synopsis Wave Turbulence by : Sergey Nazarenko

Download or read book Wave Turbulence written by Sergey Nazarenko and published by Springer Science & Business Media. This book was released on 2011-02-12 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wave Turbulence refers to the statistical theory of weakly nonlinear dispersive waves. There is a wide and growing spectrum of physical applications, ranging from sea waves, to plasma waves, to superfluid turbulence, to nonlinear optics and Bose-Einstein condensates. Beyond the fundamentals the book thus also covers new developments such as the interaction of random waves with coherent structures (vortices, solitons, wave breaks), inverse cascades leading to condensation and the transitions between weak and strong turbulence, turbulence intermittency as well as finite system size effects, such as “frozen” turbulence, discrete wave resonances and avalanche-type energy cascades. This book is an outgrow of several lectures courses held by the author and, as a result, written and structured rather as a graduate text than a monograph, with many exercises and solutions offered along the way. The present compact description primarily addresses students and non-specialist researchers wishing to enter and work in this field.


Physics of Wave Turbulence

Physics of Wave Turbulence

Author: Sébastien Galtier

Publisher: Cambridge University Press

Published: 2022-12-31

Total Pages: 291

ISBN-13: 1009275895

DOWNLOAD EBOOK

A rigorously comprehensive and interdisciplinary text on wave turbulence, for graduate students and researchers in physics-related fields.


Book Synopsis Physics of Wave Turbulence by : Sébastien Galtier

Download or read book Physics of Wave Turbulence written by Sébastien Galtier and published by Cambridge University Press. This book was released on 2022-12-31 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: A rigorously comprehensive and interdisciplinary text on wave turbulence, for graduate students and researchers in physics-related fields.


Wave Turbulence Under Parametric Excitation

Wave Turbulence Under Parametric Excitation

Author: Victor S. L'vov

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 344

ISBN-13: 3642752950

DOWNLOAD EBOOK

WAVE TURBULENCE is a state of a system of many simultaneously excited and interacting waves characterized by an energy distribution which is not in any sense close to thermodynamic equilibrium. Such situations in a choppy sea, in a hot plasma, in dielectrics under arise, for example, a powerful laser beam, in magnets placed in a strong microwave field, etc. Among the great variety of physical situations in which wave turbulence arises, it is possible to select two large limiting groups which allow a detailed analysis. The first is fully developed wave turbulence arising when energy pumping and dissipation have essentially different space scales. In this case there is a wide power spectrum of turbulence. This type of turbulence is described in detail e. g. in Zakharov et al. 1 In the second limiting case the scales in which energy pumping and dissipation occur are the same. As a rule, in this case a narrow, almost singular spectrum of turbulence appears which is concentrated near surfaces, curves or even points in k-space. One of the most important, widely investigated and instructive examples of this kind of turbulence is parametric wave turbulence appearing as a result of the evolution of a parametric instability of waves in media under strong external periodic modulation (laser beam, microwave electromagnetic field, etc. ). The present book deals with parametric wave turbulence.


Book Synopsis Wave Turbulence Under Parametric Excitation by : Victor S. L'vov

Download or read book Wave Turbulence Under Parametric Excitation written by Victor S. L'vov and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: WAVE TURBULENCE is a state of a system of many simultaneously excited and interacting waves characterized by an energy distribution which is not in any sense close to thermodynamic equilibrium. Such situations in a choppy sea, in a hot plasma, in dielectrics under arise, for example, a powerful laser beam, in magnets placed in a strong microwave field, etc. Among the great variety of physical situations in which wave turbulence arises, it is possible to select two large limiting groups which allow a detailed analysis. The first is fully developed wave turbulence arising when energy pumping and dissipation have essentially different space scales. In this case there is a wide power spectrum of turbulence. This type of turbulence is described in detail e. g. in Zakharov et al. 1 In the second limiting case the scales in which energy pumping and dissipation occur are the same. As a rule, in this case a narrow, almost singular spectrum of turbulence appears which is concentrated near surfaces, curves or even points in k-space. One of the most important, widely investigated and instructive examples of this kind of turbulence is parametric wave turbulence appearing as a result of the evolution of a parametric instability of waves in media under strong external periodic modulation (laser beam, microwave electromagnetic field, etc. ). The present book deals with parametric wave turbulence.


Kolmogorov Spectra of Turbulence I

Kolmogorov Spectra of Turbulence I

Author: Vladimir E. Zakharov

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 275

ISBN-13: 3642500528

DOWNLOAD EBOOK

Since the human organism is itself an open system, we are naturally curious about the behavior of other open systems with fluxes of matter, energy or information. Of the possible open systems, it is those endowed with many degrees of freedom and strongly deviating from equilibrium that are most challenging. A simple but very significant example of such a system is given by developed turbulence in a continuous medium, where we can discern astonishing features of universality. This two-volume monograph deals with the theory of turbulence viewed as a general physical phenomenon. In addition to vortex hydrodynamic turbulence, it considers various cases of wave turbulence in plasmas, magnets, atmosphere, ocean and space. A sound basis for discussion is provided by the concept of cascade turbulence with relay energy transfer over different scales and modes. We shall show how the initial cascade hypothesis turns into an elegant theory yielding the Kolmogorov spectra of turbulence as exact solutions. We shall describe the further development of the theory discussing stability prob lems and modes of Kolmogorov spectra formation, as well as their matching with sources and sinks. This volume is dedicated to developed wave turbulence in different media.


Book Synopsis Kolmogorov Spectra of Turbulence I by : Vladimir E. Zakharov

Download or read book Kolmogorov Spectra of Turbulence I written by Vladimir E. Zakharov and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the human organism is itself an open system, we are naturally curious about the behavior of other open systems with fluxes of matter, energy or information. Of the possible open systems, it is those endowed with many degrees of freedom and strongly deviating from equilibrium that are most challenging. A simple but very significant example of such a system is given by developed turbulence in a continuous medium, where we can discern astonishing features of universality. This two-volume monograph deals with the theory of turbulence viewed as a general physical phenomenon. In addition to vortex hydrodynamic turbulence, it considers various cases of wave turbulence in plasmas, magnets, atmosphere, ocean and space. A sound basis for discussion is provided by the concept of cascade turbulence with relay energy transfer over different scales and modes. We shall show how the initial cascade hypothesis turns into an elegant theory yielding the Kolmogorov spectra of turbulence as exact solutions. We shall describe the further development of the theory discussing stability prob lems and modes of Kolmogorov spectra formation, as well as their matching with sources and sinks. This volume is dedicated to developed wave turbulence in different media.


Chemical Oscillations, Waves, and Turbulence

Chemical Oscillations, Waves, and Turbulence

Author: Y. Kuramoto

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 165

ISBN-13: 3642696899

DOWNLOAD EBOOK

Tbis book is intended to provide a few asymptotic methods which can be applied to the dynamics of self-oscillating fields of the reaction-diffusion type and of some related systems. Such systems, forming cooperative fields of a large num of interacting similar subunits, are considered as typical synergetic systems. ber Because each local subunit itself represents an active dynamical system function ing only in far-from-equilibrium situations, the entire system is capable of showing a variety of curious pattern formations and turbulencelike behaviors quite unfamiliar in thermodynamic cooperative fields. I personally believe that the nonlinear dynamics, deterministic or statistical, of fields composed of similar active (Le., non-equilibrium) elements will form an extremely attractive branch of physics in the near future. For the study of non-equilibrium cooperative systems, some theoretical guid ing principle would be highly desirable. In this connection, this book pushes for ward a particular physical viewpoint based on the slaving principle. The dis covery of tbis principle in non-equilibrium phase transitions, especially in lasers, was due to Hermann Haken. The great utility of this concept will again be dem onstrated in tbis book for the fields of coupled nonlinear oscillators.


Book Synopsis Chemical Oscillations, Waves, and Turbulence by : Y. Kuramoto

Download or read book Chemical Oscillations, Waves, and Turbulence written by Y. Kuramoto and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 165 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tbis book is intended to provide a few asymptotic methods which can be applied to the dynamics of self-oscillating fields of the reaction-diffusion type and of some related systems. Such systems, forming cooperative fields of a large num of interacting similar subunits, are considered as typical synergetic systems. ber Because each local subunit itself represents an active dynamical system function ing only in far-from-equilibrium situations, the entire system is capable of showing a variety of curious pattern formations and turbulencelike behaviors quite unfamiliar in thermodynamic cooperative fields. I personally believe that the nonlinear dynamics, deterministic or statistical, of fields composed of similar active (Le., non-equilibrium) elements will form an extremely attractive branch of physics in the near future. For the study of non-equilibrium cooperative systems, some theoretical guid ing principle would be highly desirable. In this connection, this book pushes for ward a particular physical viewpoint based on the slaving principle. The dis covery of tbis principle in non-equilibrium phase transitions, especially in lasers, was due to Hermann Haken. The great utility of this concept will again be dem onstrated in tbis book for the fields of coupled nonlinear oscillators.


Electromagnetic Wave Propagation in Turbulence

Electromagnetic Wave Propagation in Turbulence

Author: Richard J. Sasiela

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 309

ISBN-13: 3642850707

DOWNLOAD EBOOK

Electromagnetic Wave Propagation in Turbulence is devoted to a method for obtaining analytical solutions to problems of electromagnetic wave propagation in turbulence. In a systematic way the monograph presents the Mellin transforms to evaluate analytically integrals that are not in integral tables. Ample examples of application are outlined and solutions for many problems in turbulence theory are given. The method itself relates to asymptotic results that are applicable to a broad class of problems for which many asymptotic methods had to be employed previously.


Book Synopsis Electromagnetic Wave Propagation in Turbulence by : Richard J. Sasiela

Download or read book Electromagnetic Wave Propagation in Turbulence written by Richard J. Sasiela and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electromagnetic Wave Propagation in Turbulence is devoted to a method for obtaining analytical solutions to problems of electromagnetic wave propagation in turbulence. In a systematic way the monograph presents the Mellin transforms to evaluate analytically integrals that are not in integral tables. Ample examples of application are outlined and solutions for many problems in turbulence theory are given. The method itself relates to asymptotic results that are applicable to a broad class of problems for which many asymptotic methods had to be employed previously.


Advances In Wave Turbulence

Advances In Wave Turbulence

Author: Victor Shrira

Publisher: World Scientific

Published: 2013-05-10

Total Pages: 294

ISBN-13: 9814520802

DOWNLOAD EBOOK

Wave or weak turbulence is a branch of science concerned with the evolution of random wave fields of all kinds and on all scales, from waves in galaxies to capillary waves on water surface, from waves in nonlinear optics to quantum fluids. In spite of the enormous diversity of wave fields in nature, there is a common conceptual and mathematical core which allows to describe the processes of random wave interactions within the same conceptual paradigm, and in the same language. The development of this core and its links with the applications is the essence of wave turbulence science (WT) which is an established integral part of nonlinear science.The book comprising seven reviews aims at discussing new challenges in WT and perspectives of its development. A special emphasis is made upon the links between the theory and experiment. Each of the reviews is devoted to a particular field of application (there is no overlap), or a novel approach or idea. The reviews cover a variety of applications of WT, including water waves, optical fibers, WT experiments on a metal plate and observations of astrophysical WT.


Book Synopsis Advances In Wave Turbulence by : Victor Shrira

Download or read book Advances In Wave Turbulence written by Victor Shrira and published by World Scientific. This book was released on 2013-05-10 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wave or weak turbulence is a branch of science concerned with the evolution of random wave fields of all kinds and on all scales, from waves in galaxies to capillary waves on water surface, from waves in nonlinear optics to quantum fluids. In spite of the enormous diversity of wave fields in nature, there is a common conceptual and mathematical core which allows to describe the processes of random wave interactions within the same conceptual paradigm, and in the same language. The development of this core and its links with the applications is the essence of wave turbulence science (WT) which is an established integral part of nonlinear science.The book comprising seven reviews aims at discussing new challenges in WT and perspectives of its development. A special emphasis is made upon the links between the theory and experiment. Each of the reviews is devoted to a particular field of application (there is no overlap), or a novel approach or idea. The reviews cover a variety of applications of WT, including water waves, optical fibers, WT experiments on a metal plate and observations of astrophysical WT.


Fast Solar Wind Driven by Parametric Decay Instability and Alfvén Wave Turbulence

Fast Solar Wind Driven by Parametric Decay Instability and Alfvén Wave Turbulence

Author: Munehito Shoda

Publisher: Springer Nature

Published: 2021-04-13

Total Pages: 94

ISBN-13: 9811610304

DOWNLOAD EBOOK

This book discusses key theoretical aspects concerning the formation of the solar wind: the most essential building block in the heliosphere, in which planets orbit. To understand the influence of solar activity on planetary magnetospheres and atmospheres, we need to first understand the origin of the solar wind, which is still under debate. This book presents the outcomes of state-of-the-art numerical simulations of solar wind acceleration, including the first three-dimensional simulation of the turbulence-driven solar wind model. One of the book’s goals is to include compressional effects in the dynamics of solar wind turbulence; accordingly, it discusses parametric decay instability in detail. Several key aspects that are relevant to the Parker Solar Probe observations are also discussed. Given its scope, the book plays a key role in bridging the gap between the theory of magnetohydrodynamic turbulence and current/future in-situ observations of the solar wind. This book is based on the Ph.D. thesis by the author, which won the 2019 International Astronomical Union Division E Ph.D. prize.


Book Synopsis Fast Solar Wind Driven by Parametric Decay Instability and Alfvén Wave Turbulence by : Munehito Shoda

Download or read book Fast Solar Wind Driven by Parametric Decay Instability and Alfvén Wave Turbulence written by Munehito Shoda and published by Springer Nature. This book was released on 2021-04-13 with total page 94 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses key theoretical aspects concerning the formation of the solar wind: the most essential building block in the heliosphere, in which planets orbit. To understand the influence of solar activity on planetary magnetospheres and atmospheres, we need to first understand the origin of the solar wind, which is still under debate. This book presents the outcomes of state-of-the-art numerical simulations of solar wind acceleration, including the first three-dimensional simulation of the turbulence-driven solar wind model. One of the book’s goals is to include compressional effects in the dynamics of solar wind turbulence; accordingly, it discusses parametric decay instability in detail. Several key aspects that are relevant to the Parker Solar Probe observations are also discussed. Given its scope, the book plays a key role in bridging the gap between the theory of magnetohydrodynamic turbulence and current/future in-situ observations of the solar wind. This book is based on the Ph.D. thesis by the author, which won the 2019 International Astronomical Union Division E Ph.D. prize.


Wave Turbulence

Wave Turbulence

Author: Sergey Nazarenko

Publisher: Springer

Published: 2011-08-11

Total Pages: 287

ISBN-13: 3642159427

DOWNLOAD EBOOK

Wave Turbulence refers to the statistical theory of weakly nonlinear dispersive waves. There is a wide and growing spectrum of physical applications, ranging from sea waves, to plasma waves, to superfluid turbulence, to nonlinear optics and Bose-Einstein condensates. Beyond the fundamentals the book thus also covers new developments such as the interaction of random waves with coherent structures (vortices, solitons, wave breaks), inverse cascades leading to condensation and the transitions between weak and strong turbulence, turbulence intermittency as well as finite system size effects, such as “frozen” turbulence, discrete wave resonances and avalanche-type energy cascades. This book is an outgrow of several lectures courses held by the author and, as a result, written and structured rather as a graduate text than a monograph, with many exercises and solutions offered along the way. The present compact description primarily addresses students and non-specialist researchers wishing to enter and work in this field.


Book Synopsis Wave Turbulence by : Sergey Nazarenko

Download or read book Wave Turbulence written by Sergey Nazarenko and published by Springer. This book was released on 2011-08-11 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wave Turbulence refers to the statistical theory of weakly nonlinear dispersive waves. There is a wide and growing spectrum of physical applications, ranging from sea waves, to plasma waves, to superfluid turbulence, to nonlinear optics and Bose-Einstein condensates. Beyond the fundamentals the book thus also covers new developments such as the interaction of random waves with coherent structures (vortices, solitons, wave breaks), inverse cascades leading to condensation and the transitions between weak and strong turbulence, turbulence intermittency as well as finite system size effects, such as “frozen” turbulence, discrete wave resonances and avalanche-type energy cascades. This book is an outgrow of several lectures courses held by the author and, as a result, written and structured rather as a graduate text than a monograph, with many exercises and solutions offered along the way. The present compact description primarily addresses students and non-specialist researchers wishing to enter and work in this field.


Physics of Wave Turbulence

Physics of Wave Turbulence

Author: Sébastien Galtier

Publisher: Cambridge University Press

Published: 2022-12-22

Total Pages: 291

ISBN-13: 1009275909

DOWNLOAD EBOOK

A century ago, Lewis Fry Richardson introduced the concept of energy cascades in turbulence. Since this conceptual breakthrough, turbulence has been studied in diverse systems and our knowledge has increased considerably through theoretical, numerical, experimental and observational advances. Eddy turbulence and wave turbulence are the two regimes we can find in nature. So far, most attention has been devoted to the former regime, eddy turbulence, which is often observed in water. However, physicists are often interested in systems for which wave turbulence is relevant. This textbook deals with wave turbulence and systems composed of a sea of weak waves interacting non-linearly. After a general introduction which includes a brief history of the field, the theory of wave turbulence is introduced rigorously for surface waves. The theory is then applied to examples in hydrodynamics, plasma physics, astrophysics and cosmology, giving the reader a modern and interdisciplinary view of the subject.


Book Synopsis Physics of Wave Turbulence by : Sébastien Galtier

Download or read book Physics of Wave Turbulence written by Sébastien Galtier and published by Cambridge University Press. This book was released on 2022-12-22 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: A century ago, Lewis Fry Richardson introduced the concept of energy cascades in turbulence. Since this conceptual breakthrough, turbulence has been studied in diverse systems and our knowledge has increased considerably through theoretical, numerical, experimental and observational advances. Eddy turbulence and wave turbulence are the two regimes we can find in nature. So far, most attention has been devoted to the former regime, eddy turbulence, which is often observed in water. However, physicists are often interested in systems for which wave turbulence is relevant. This textbook deals with wave turbulence and systems composed of a sea of weak waves interacting non-linearly. After a general introduction which includes a brief history of the field, the theory of wave turbulence is introduced rigorously for surface waves. The theory is then applied to examples in hydrodynamics, plasma physics, astrophysics and cosmology, giving the reader a modern and interdisciplinary view of the subject.