Weighted Polynomial Approximation and Numerical Methods for Integral Equations

Weighted Polynomial Approximation and Numerical Methods for Integral Equations

Author: Peter Junghanns

Publisher: Springer Nature

Published: 2021-08-10

Total Pages: 662

ISBN-13: 303077497X

DOWNLOAD EBOOK

The book presents a combination of two topics: one coming from the theory of approximation of functions and integrals by interpolation and quadrature, respectively, and the other from the numerical analysis of operator equations, in particular, of integral and related equations. The text focusses on interpolation and quadrature processes for functions defined on bounded and unbounded intervals and having certain singularities at the endpoints of the interval, as well as on numerical methods for Fredholm integral equations of first and second kind with smooth and weakly singular kernel functions, linear and nonlinear Cauchy singular integral equations, and hypersingular integral equations. The book includes both classic and very recent results and will appeal to graduate students and researchers who want to learn about the approximation of functions and the numerical solution of operator equations, in particular integral equations.


Book Synopsis Weighted Polynomial Approximation and Numerical Methods for Integral Equations by : Peter Junghanns

Download or read book Weighted Polynomial Approximation and Numerical Methods for Integral Equations written by Peter Junghanns and published by Springer Nature. This book was released on 2021-08-10 with total page 662 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents a combination of two topics: one coming from the theory of approximation of functions and integrals by interpolation and quadrature, respectively, and the other from the numerical analysis of operator equations, in particular, of integral and related equations. The text focusses on interpolation and quadrature processes for functions defined on bounded and unbounded intervals and having certain singularities at the endpoints of the interval, as well as on numerical methods for Fredholm integral equations of first and second kind with smooth and weakly singular kernel functions, linear and nonlinear Cauchy singular integral equations, and hypersingular integral equations. The book includes both classic and very recent results and will appeal to graduate students and researchers who want to learn about the approximation of functions and the numerical solution of operator equations, in particular integral equations.


Approximation Methods for Solutions of Differential and Integral Equations

Approximation Methods for Solutions of Differential and Integral Equations

Author: V. K. Dzyadyk

Publisher: VSP

Published: 1995

Total Pages: 340

ISBN-13: 9789067641944

DOWNLOAD EBOOK

This book is the result of 20 years of investigations carried out by the author and his colleagues in order to bring closer and, to a certain extent, synthesize a number of well-known results, ideas and methods from the theory of function approximation, theory of differential and integral equations and numerical analysis. The book opens with an introduction on the theory of function approximation and is followed by a new approach to the Fredholm integral equations to the second kind. Several chapters are devoted to the construction of new methods for the effective approximation of solutions of several important integral, and ordinary and partial differential equations. In addition, new general results on the theory of linear differential equations with one regular singular point, as well as applications of the various new methods are discussed.


Book Synopsis Approximation Methods for Solutions of Differential and Integral Equations by : V. K. Dzyadyk

Download or read book Approximation Methods for Solutions of Differential and Integral Equations written by V. K. Dzyadyk and published by VSP. This book was released on 1995 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the result of 20 years of investigations carried out by the author and his colleagues in order to bring closer and, to a certain extent, synthesize a number of well-known results, ideas and methods from the theory of function approximation, theory of differential and integral equations and numerical analysis. The book opens with an introduction on the theory of function approximation and is followed by a new approach to the Fredholm integral equations to the second kind. Several chapters are devoted to the construction of new methods for the effective approximation of solutions of several important integral, and ordinary and partial differential equations. In addition, new general results on the theory of linear differential equations with one regular singular point, as well as applications of the various new methods are discussed.


A Course on Integral Equations with Numerical Analysis

A Course on Integral Equations with Numerical Analysis

Author: Tofigh Allahviranloo

Publisher: Springer Nature

Published: 2021-10-30

Total Pages: 222

ISBN-13: 3030853500

DOWNLOAD EBOOK

This book suggests that the numerical analysis subjects’ matter are the important tools of the book topic, because numerical errors and methods have important roles in solving integral equations. Therefore, all needed topics including a brief description of interpolation are explained in the book. The integral equations have many applications in the engineering, medical, and economic sciences, so the present book contains new and useful materials about interval computations including interval interpolations that are going to be used in interval integral equations. The concepts of integral equations are going to be discussed in two directions, analytical concepts, and numerical solutions which both are necessary for these kinds of dynamic systems. The differences between this book with the others are a full discussion of error topics and also using interval interpolations concepts to obtain interval integral equations. All researchers and students in the field of mathematical, computer, and also engineering sciences can benefit the subjects of the book.


Book Synopsis A Course on Integral Equations with Numerical Analysis by : Tofigh Allahviranloo

Download or read book A Course on Integral Equations with Numerical Analysis written by Tofigh Allahviranloo and published by Springer Nature. This book was released on 2021-10-30 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book suggests that the numerical analysis subjects’ matter are the important tools of the book topic, because numerical errors and methods have important roles in solving integral equations. Therefore, all needed topics including a brief description of interpolation are explained in the book. The integral equations have many applications in the engineering, medical, and economic sciences, so the present book contains new and useful materials about interval computations including interval interpolations that are going to be used in interval integral equations. The concepts of integral equations are going to be discussed in two directions, analytical concepts, and numerical solutions which both are necessary for these kinds of dynamic systems. The differences between this book with the others are a full discussion of error topics and also using interval interpolations concepts to obtain interval integral equations. All researchers and students in the field of mathematical, computer, and also engineering sciences can benefit the subjects of the book.


Numerical Solution of Integral Equations

Numerical Solution of Integral Equations

Author: Michael A. Golberg

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 428

ISBN-13: 1489925937

DOWNLOAD EBOOK

In 1979, I edited Volume 18 in this series: Solution Methods for Integral Equations: Theory and Applications. Since that time, there has been an explosive growth in all aspects of the numerical solution of integral equations. By my estimate over 2000 papers on this subject have been published in the last decade, and more than 60 books on theory and applications have appeared. In particular, as can be seen in many of the chapters in this book, integral equation techniques are playing an increas ingly important role in the solution of many scientific and engineering problems. For instance, the boundary element method discussed by Atkinson in Chapter 1 is becoming an equal partner with finite element and finite difference techniques for solving many types of partial differential equations. Obviously, in one volume it would be impossible to present a complete picture of what has taken place in this area during the past ten years. Consequently, we have chosen a number of subjects in which significant advances have been made that we feel have not been covered in depth in other books. For instance, ten years ago the theory of the numerical solution of Cauchy singular equations was in its infancy. Today, as shown by Golberg and Elliott in Chapters 5 and 6, the theory of polynomial approximations is essentially complete, although many details of practical implementation remain to be worked out.


Book Synopsis Numerical Solution of Integral Equations by : Michael A. Golberg

Download or read book Numerical Solution of Integral Equations written by Michael A. Golberg and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 1979, I edited Volume 18 in this series: Solution Methods for Integral Equations: Theory and Applications. Since that time, there has been an explosive growth in all aspects of the numerical solution of integral equations. By my estimate over 2000 papers on this subject have been published in the last decade, and more than 60 books on theory and applications have appeared. In particular, as can be seen in many of the chapters in this book, integral equation techniques are playing an increas ingly important role in the solution of many scientific and engineering problems. For instance, the boundary element method discussed by Atkinson in Chapter 1 is becoming an equal partner with finite element and finite difference techniques for solving many types of partial differential equations. Obviously, in one volume it would be impossible to present a complete picture of what has taken place in this area during the past ten years. Consequently, we have chosen a number of subjects in which significant advances have been made that we feel have not been covered in depth in other books. For instance, ten years ago the theory of the numerical solution of Cauchy singular equations was in its infancy. Today, as shown by Golberg and Elliott in Chapters 5 and 6, the theory of polynomial approximations is essentially complete, although many details of practical implementation remain to be worked out.


Numerical Methods III - Approximation of Functions

Numerical Methods III - Approximation of Functions

Author: Boris Obsieger

Publisher:

Published:

Total Pages:

ISBN-13: 953791903X

DOWNLOAD EBOOK

Normal 0 21 false false false HR X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Obična tablica"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} The book is written primarily for the students on technical universities, but also as a useful handbook for engineers and PhD students. It introduces reader into various types of approximations of functions, which are defined either explicitly or by their values in the distinct set of points, as well as into economisation of existing approximation formulas. Why the approximation of functions is so important? Simply because various functions cannot be calculated without approximation. Approximation formulas for some of these functions (such as trigonometric functions and logarithms) are already implemented in the calculators and standard computer libraries, providing the precision to all bits of memory in which a value is stored. So high precision is not usually required in the engineering practice, and use more numerical operations that is really necessary. Economised approximation formulas can provide required precision with less numerical operation, and can made numerical algorithms faster, especially when such formulas are used in nested loops. The other important use of approximation is in calculating functions that are defined by values in the chosen set of points, such as in solving integral equations (usually obtained from differential equations). The book is divided into five chapters. In the first chapter are briefly explained basic principles of approximations, i.e. approximations near the chosen point (by Maclaurin, Taylor or Padé expansion), principles of approximations with orthogonal series and principles of least squares approximations. In the second chapter, various types of least squares polynomial approximations, particularly those by using orthogonal polynomials such as Legendre, Jacobi, Laguerre, Hermite, Zernike and Gram polynomials are explained. Third chapter explains approximations with Fourier series, which are the base for developing approximations with Chebyshev polynomials (fourth chapter). Uniform approximation and further usage of Chebyshev polynomials in the almost uniform approximation, as well as in economisation of existing approximation formulas, are described in fifth chapter. Practical applications of described approximation procedures are supported by 35 algorithms and 40 examples. Besides its practical usage, the given text with 36 figures and 11 tables, partially in colour, represents a valuable background for understanding, developing and applying various numerical methods, such as interpolation, numerical integration and solving partial differential equations, which are topics in the further volumes of the series Numerical Methods.


Book Synopsis Numerical Methods III - Approximation of Functions by : Boris Obsieger

Download or read book Numerical Methods III - Approximation of Functions written by Boris Obsieger and published by . This book was released on with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Normal 0 21 false false false HR X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Obična tablica"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} The book is written primarily for the students on technical universities, but also as a useful handbook for engineers and PhD students. It introduces reader into various types of approximations of functions, which are defined either explicitly or by their values in the distinct set of points, as well as into economisation of existing approximation formulas. Why the approximation of functions is so important? Simply because various functions cannot be calculated without approximation. Approximation formulas for some of these functions (such as trigonometric functions and logarithms) are already implemented in the calculators and standard computer libraries, providing the precision to all bits of memory in which a value is stored. So high precision is not usually required in the engineering practice, and use more numerical operations that is really necessary. Economised approximation formulas can provide required precision with less numerical operation, and can made numerical algorithms faster, especially when such formulas are used in nested loops. The other important use of approximation is in calculating functions that are defined by values in the chosen set of points, such as in solving integral equations (usually obtained from differential equations). The book is divided into five chapters. In the first chapter are briefly explained basic principles of approximations, i.e. approximations near the chosen point (by Maclaurin, Taylor or Padé expansion), principles of approximations with orthogonal series and principles of least squares approximations. In the second chapter, various types of least squares polynomial approximations, particularly those by using orthogonal polynomials such as Legendre, Jacobi, Laguerre, Hermite, Zernike and Gram polynomials are explained. Third chapter explains approximations with Fourier series, which are the base for developing approximations with Chebyshev polynomials (fourth chapter). Uniform approximation and further usage of Chebyshev polynomials in the almost uniform approximation, as well as in economisation of existing approximation formulas, are described in fifth chapter. Practical applications of described approximation procedures are supported by 35 algorithms and 40 examples. Besides its practical usage, the given text with 36 figures and 11 tables, partially in colour, represents a valuable background for understanding, developing and applying various numerical methods, such as interpolation, numerical integration and solving partial differential equations, which are topics in the further volumes of the series Numerical Methods.


Introduction To The Theory Of Weighted Polynomial Approximation

Introduction To The Theory Of Weighted Polynomial Approximation

Author: H N Mhaskar

Publisher: World Scientific

Published: 1997-01-04

Total Pages: 398

ISBN-13: 9814518050

DOWNLOAD EBOOK

In this book, we have attempted to explain a variety of different techniques and ideas which have contributed to this subject in its course of successive refinements during the last 25 years. There are other books and surveys reviewing the ideas from the perspective of either potential theory or orthogonal polynomials. The main thrust of this book is to introduce the subject from an approximation theory point of view. Thus, the main motivation is to study analogues of results from classical trigonometric approximation theory, introducing other ideas as needed. It is not our objective to survey the most recent results, but merely to introduce to the readers the thought processes and ideas as they are developed.This book is intended to be self-contained, although the reader is expected to be familiar with rudimentary real and complex analysis. It will also help to have studied elementary trigonometric approximation theory, and have some exposure to orthogonal polynomials.


Book Synopsis Introduction To The Theory Of Weighted Polynomial Approximation by : H N Mhaskar

Download or read book Introduction To The Theory Of Weighted Polynomial Approximation written by H N Mhaskar and published by World Scientific. This book was released on 1997-01-04 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, we have attempted to explain a variety of different techniques and ideas which have contributed to this subject in its course of successive refinements during the last 25 years. There are other books and surveys reviewing the ideas from the perspective of either potential theory or orthogonal polynomials. The main thrust of this book is to introduce the subject from an approximation theory point of view. Thus, the main motivation is to study analogues of results from classical trigonometric approximation theory, introducing other ideas as needed. It is not our objective to survey the most recent results, but merely to introduce to the readers the thought processes and ideas as they are developed.This book is intended to be self-contained, although the reader is expected to be familiar with rudimentary real and complex analysis. It will also help to have studied elementary trigonometric approximation theory, and have some exposure to orthogonal polynomials.


The Numerical Treatment of Integral Equations

The Numerical Treatment of Integral Equations

Author: Christopher T. H. Baker

Publisher: Oxford University Press, USA

Published: 1977

Total Pages: 1056

ISBN-13:

DOWNLOAD EBOOK


Book Synopsis The Numerical Treatment of Integral Equations by : Christopher T. H. Baker

Download or read book The Numerical Treatment of Integral Equations written by Christopher T. H. Baker and published by Oxford University Press, USA. This book was released on 1977 with total page 1056 pages. Available in PDF, EPUB and Kindle. Book excerpt:


The Numerical Solution of Integral Equations of the Second Kind

The Numerical Solution of Integral Equations of the Second Kind

Author: Kendall E. Atkinson

Publisher: Cambridge University Press

Published: 1997-06-28

Total Pages: 572

ISBN-13: 0521583918

DOWNLOAD EBOOK

This book provides an extensive introduction to the numerical solution of a large class of integral equations.


Book Synopsis The Numerical Solution of Integral Equations of the Second Kind by : Kendall E. Atkinson

Download or read book The Numerical Solution of Integral Equations of the Second Kind written by Kendall E. Atkinson and published by Cambridge University Press. This book was released on 1997-06-28 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an extensive introduction to the numerical solution of a large class of integral equations.


Approximate Calculation of Integrals

Approximate Calculation of Integrals

Author: V. I. Krylov

Publisher: Courier Corporation

Published: 2012-01-27

Total Pages: 372

ISBN-13: 048615467X

DOWNLOAD EBOOK

An introduction to the principal ideas and results of the contemporary theory of approximate integration, this volume approaches its subject from the viewpoint of functional analysis. The 3-part treatment begins with concepts and theorems encountered in the theory of quadrature and then explores the problem of calculation of definite integrals and methods for the calculation of indefinite integral. 1962 edition.


Book Synopsis Approximate Calculation of Integrals by : V. I. Krylov

Download or read book Approximate Calculation of Integrals written by V. I. Krylov and published by Courier Corporation. This book was released on 2012-01-27 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the principal ideas and results of the contemporary theory of approximate integration, this volume approaches its subject from the viewpoint of functional analysis. The 3-part treatment begins with concepts and theorems encountered in the theory of quadrature and then explores the problem of calculation of definite integrals and methods for the calculation of indefinite integral. 1962 edition.


Polynomial Approximation of Differential Equations

Polynomial Approximation of Differential Equations

Author: Daniele Funaro

Publisher: Springer Science & Business Media

Published: 2008-10-04

Total Pages: 315

ISBN-13: 3540467831

DOWNLOAD EBOOK

This book is devoted to the analysis of approximate solution techniques for differential equations, based on classical orthogonal polynomials. These techniques are popularly known as spectral methods. In the last few decades, there has been a growing interest in this subject. As a matter offact, spectral methods provide a competitive alternative to other standard approximation techniques, for a large variety of problems. Initial ap plications were concerned with the investigation of periodic solutions of boundary value problems using trigonometric polynomials. Subsequently, the analysis was extended to algebraic polynomials. Expansions in orthogonal basis functions were preferred, due to their high accuracy and flexibility in computations. The aim of this book is to present a preliminary mathematical background for be ginners who wish to study and perform numerical experiments, or who wish to improve their skill in order to tackle more specific applications. In addition, it furnishes a com prehensive collection of basic formulas and theorems that are useful for implementations at any level of complexity. We tried to maintain an elementary exposition so that no experience in functional analysis is required.


Book Synopsis Polynomial Approximation of Differential Equations by : Daniele Funaro

Download or read book Polynomial Approximation of Differential Equations written by Daniele Funaro and published by Springer Science & Business Media. This book was released on 2008-10-04 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to the analysis of approximate solution techniques for differential equations, based on classical orthogonal polynomials. These techniques are popularly known as spectral methods. In the last few decades, there has been a growing interest in this subject. As a matter offact, spectral methods provide a competitive alternative to other standard approximation techniques, for a large variety of problems. Initial ap plications were concerned with the investigation of periodic solutions of boundary value problems using trigonometric polynomials. Subsequently, the analysis was extended to algebraic polynomials. Expansions in orthogonal basis functions were preferred, due to their high accuracy and flexibility in computations. The aim of this book is to present a preliminary mathematical background for be ginners who wish to study and perform numerical experiments, or who wish to improve their skill in order to tackle more specific applications. In addition, it furnishes a com prehensive collection of basic formulas and theorems that are useful for implementations at any level of complexity. We tried to maintain an elementary exposition so that no experience in functional analysis is required.