Wind Driven Doubly Fed Induction Generator

Wind Driven Doubly Fed Induction Generator

Author: Adel Abdelbaset

Publisher: Springer

Published: 2017-10-30

Total Pages: 110

ISBN-13: 3319701088

DOWNLOAD EBOOK

This book presents a modified model reference adaptive system (MRAS) observer for sensorless vector control of a wind driven doubly fed induction generator (DFIG). A mathematical model of the DFIG as influenced by core loss and main flux saturation is developed. The authors describe and evaluate grid synchronization enhancement of a wind driven DFIG using adaptive sliding mode control (SMC). Besides, grid synchronization of a wind driven DFIG under unbalanced grid voltage is also fully covered in this book.


Book Synopsis Wind Driven Doubly Fed Induction Generator by : Adel Abdelbaset

Download or read book Wind Driven Doubly Fed Induction Generator written by Adel Abdelbaset and published by Springer. This book was released on 2017-10-30 with total page 110 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a modified model reference adaptive system (MRAS) observer for sensorless vector control of a wind driven doubly fed induction generator (DFIG). A mathematical model of the DFIG as influenced by core loss and main flux saturation is developed. The authors describe and evaluate grid synchronization enhancement of a wind driven DFIG using adaptive sliding mode control (SMC). Besides, grid synchronization of a wind driven DFIG under unbalanced grid voltage is also fully covered in this book.


Advanced Controls for Wind Driven Doubly Fed Induction Generators

Advanced Controls for Wind Driven Doubly Fed Induction Generators

Author: Mahmoud K. Abdelhamid

Publisher: CRC Press

Published: 2023-12-22

Total Pages: 212

ISBN-13: 1003832156

DOWNLOAD EBOOK

Advanced Controls for Wind Driven Doubly Fed Induction Generators discusses the most advanced control algorithms used for enhancing the dynamics of a doubly fed induction generator (DFIG) operating at fixed and variable speeds, and which are used for different utilization purposes (standalone and grid connection). Extensive generator performance analysis has been introduced using various control topologies. Features: Presents modeling of wind energy conversion systems (WECS), including a wind turbine as a prime mover, a DFIG as a generation unit for electrical energy, and a three-phase induction motor as an isolated load Explores a detailed description for the presented control algorithms in order to visualize the base principle of each method Introduces a comprehensive performance analysis for the DFIG using the formulated predictive voltage control scheme and other control techniques under different operating conditions Examines the formulation of new control approaches which overcome the shortages present in previous DFIG control schemes Presents a detailed comparison between different control topologies for the DFIG to outline the most effective procedure in terms of dynamic response, structure simplicity, ripples, total harmonic distortion, and computational burdens The book is written for researchers and academics working on advanced control systems and those interested in areas such as machine drives, renewable energy systems, 'adaptive control', modeling of WECS, and optimization theory.


Book Synopsis Advanced Controls for Wind Driven Doubly Fed Induction Generators by : Mahmoud K. Abdelhamid

Download or read book Advanced Controls for Wind Driven Doubly Fed Induction Generators written by Mahmoud K. Abdelhamid and published by CRC Press. This book was released on 2023-12-22 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced Controls for Wind Driven Doubly Fed Induction Generators discusses the most advanced control algorithms used for enhancing the dynamics of a doubly fed induction generator (DFIG) operating at fixed and variable speeds, and which are used for different utilization purposes (standalone and grid connection). Extensive generator performance analysis has been introduced using various control topologies. Features: Presents modeling of wind energy conversion systems (WECS), including a wind turbine as a prime mover, a DFIG as a generation unit for electrical energy, and a three-phase induction motor as an isolated load Explores a detailed description for the presented control algorithms in order to visualize the base principle of each method Introduces a comprehensive performance analysis for the DFIG using the formulated predictive voltage control scheme and other control techniques under different operating conditions Examines the formulation of new control approaches which overcome the shortages present in previous DFIG control schemes Presents a detailed comparison between different control topologies for the DFIG to outline the most effective procedure in terms of dynamic response, structure simplicity, ripples, total harmonic distortion, and computational burdens The book is written for researchers and academics working on advanced control systems and those interested in areas such as machine drives, renewable energy systems, 'adaptive control', modeling of WECS, and optimization theory.


Control of a Wind Driven Doubly Fed Induction Generator During Grid Faults

Control of a Wind Driven Doubly Fed Induction Generator During Grid Faults

Author: Mahmoud Mossa

Publisher: GRIN Verlag

Published: 2013-02-06

Total Pages: 134

ISBN-13: 3656367760

DOWNLOAD EBOOK

Master's Thesis from the year 2013 in the subject Engineering - Power Engineering, grade: none, , course: Electrical engineering (Renewable energy), language: English, abstract: Wind electrical power systems are recently getting lot of attention, because they are cost competitive, environmental clean and safe renewable power source, as compared with fossil fuel and nuclear power generation. A special type of induction generator, called a doubly fed induction generator (DFIG), is used extensively for high-power wind applications. They are used more and more in wind turbine applications due to ease controllability, high energy efficiency and improved power quality. This thesis aims to develop a method of a field orientation scheme for control both the active and reactive powers of a DFIG driven by a wind turbine.The proposed control system consists of a wind turbine that drives a DFIG connected to the utility grid through AC-DC-AC link. The main control objective is to regulate the dc link voltage for operation at maximum available wind power.This is achieved by controlling the and axes components of voltages and currents for both rotor side and line side converters using PI controllers. The complete dynamic model of the proposed system is described in detail. Computer simulations have been carried out in order to validate the effectiveness of the proposed system during the variation of wind speed. The results prove that , better overall performances are achieved, quick recover from wind speed disturbances in addition to good tracking ability. Generally, any abnormalities associated with grid asymmetrical faults are going to affect the system performance considerably. During grid faults, unbalanced currents cause negative effects like overheating problems and mechanical stress due to high torque pulsations that can damage the rotor shaft, gearbox or blade assembly. Therefore, the dynamic model of the DFIG, driven by a wind turbine during grid faults has been analyzed and developed using the method of symmetrical components. The dynamic performance of the DFIG during unbalanced grid conditions is analyzed and described in detail using digital simulations. A novel fault ride-through (FRT) capability is proposed (i.e. the ability of the power system to remain connected to the grid during faults) with suitable control strategy in this thesis. In this scheme, the input mechanical energy of the wind turbine during grid faults is stored and utilized at the moment of fault clearance, instead of being dissipated in the resistors of the crowbar circuit as in the existing FRT schemes. [...]


Book Synopsis Control of a Wind Driven Doubly Fed Induction Generator During Grid Faults by : Mahmoud Mossa

Download or read book Control of a Wind Driven Doubly Fed Induction Generator During Grid Faults written by Mahmoud Mossa and published by GRIN Verlag. This book was released on 2013-02-06 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master's Thesis from the year 2013 in the subject Engineering - Power Engineering, grade: none, , course: Electrical engineering (Renewable energy), language: English, abstract: Wind electrical power systems are recently getting lot of attention, because they are cost competitive, environmental clean and safe renewable power source, as compared with fossil fuel and nuclear power generation. A special type of induction generator, called a doubly fed induction generator (DFIG), is used extensively for high-power wind applications. They are used more and more in wind turbine applications due to ease controllability, high energy efficiency and improved power quality. This thesis aims to develop a method of a field orientation scheme for control both the active and reactive powers of a DFIG driven by a wind turbine.The proposed control system consists of a wind turbine that drives a DFIG connected to the utility grid through AC-DC-AC link. The main control objective is to regulate the dc link voltage for operation at maximum available wind power.This is achieved by controlling the and axes components of voltages and currents for both rotor side and line side converters using PI controllers. The complete dynamic model of the proposed system is described in detail. Computer simulations have been carried out in order to validate the effectiveness of the proposed system during the variation of wind speed. The results prove that , better overall performances are achieved, quick recover from wind speed disturbances in addition to good tracking ability. Generally, any abnormalities associated with grid asymmetrical faults are going to affect the system performance considerably. During grid faults, unbalanced currents cause negative effects like overheating problems and mechanical stress due to high torque pulsations that can damage the rotor shaft, gearbox or blade assembly. Therefore, the dynamic model of the DFIG, driven by a wind turbine during grid faults has been analyzed and developed using the method of symmetrical components. The dynamic performance of the DFIG during unbalanced grid conditions is analyzed and described in detail using digital simulations. A novel fault ride-through (FRT) capability is proposed (i.e. the ability of the power system to remain connected to the grid during faults) with suitable control strategy in this thesis. In this scheme, the input mechanical energy of the wind turbine during grid faults is stored and utilized at the moment of fault clearance, instead of being dissipated in the resistors of the crowbar circuit as in the existing FRT schemes. [...]


Modeling, Analysis and Enhancement of the performance of a Wind Driven DFIG During steady state and transient conditions

Modeling, Analysis and Enhancement of the performance of a Wind Driven DFIG During steady state and transient conditions

Author: Mohmoud Mossa

Publisher: Anchor Academic Publishing (aap_verlag)

Published: 2014-02-01

Total Pages: 116

ISBN-13: 3954896397

DOWNLOAD EBOOK

Recently, wind electrical power systems are getting a lot of attention since they are cost competitive, environmentally clean, and safe renewable power source as compared with the fossil fuel and nuclear power generation. A special type of induction generator, called a doubly fed induction generator (DFIG), is used extensively for high-power wind applications. They are used more and more in wind turbine applications due to the ease of controllability, the high energy efficiency, and the improved power quality.This research aims to develop a method of a field orientation scheme for control both, the active and the reactive powers of a DFIG that are driven by a wind turbine. Also, the dynamic model of the DFIG, driven by a wind turbine during grid faults, is analyzed and developed, using the method of symmetrical components. Finally, this study proposes a novel fault ride-through (FRT) capability with a suitable control strategy (i.e. the ability of the power system to remain connected to the grid during faults).


Book Synopsis Modeling, Analysis and Enhancement of the performance of a Wind Driven DFIG During steady state and transient conditions by : Mohmoud Mossa

Download or read book Modeling, Analysis and Enhancement of the performance of a Wind Driven DFIG During steady state and transient conditions written by Mohmoud Mossa and published by Anchor Academic Publishing (aap_verlag). This book was released on 2014-02-01 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recently, wind electrical power systems are getting a lot of attention since they are cost competitive, environmentally clean, and safe renewable power source as compared with the fossil fuel and nuclear power generation. A special type of induction generator, called a doubly fed induction generator (DFIG), is used extensively for high-power wind applications. They are used more and more in wind turbine applications due to the ease of controllability, the high energy efficiency, and the improved power quality.This research aims to develop a method of a field orientation scheme for control both, the active and the reactive powers of a DFIG that are driven by a wind turbine. Also, the dynamic model of the DFIG, driven by a wind turbine during grid faults, is analyzed and developed, using the method of symmetrical components. Finally, this study proposes a novel fault ride-through (FRT) capability with a suitable control strategy (i.e. the ability of the power system to remain connected to the grid during faults).


Advanced Control of Doubly Fed Induction Generator for Wind Power Systems

Advanced Control of Doubly Fed Induction Generator for Wind Power Systems

Author: Dehong Xu

Publisher: John Wiley & Sons

Published: 2018-08-14

Total Pages: 486

ISBN-13: 1119172063

DOWNLOAD EBOOK

Covers the fundamental concepts and advanced modelling techniques of Doubly Fed Induction Generators accompanied by analyses and simulation results Filled with illustrations, problems, models, analyses, case studies, selected simulation and experimental results, Advanced Control of Doubly Fed Induction Generator for Wind Power Systems provides the basic concepts for modelling and controlling of Doubly Fed Induction Generator (DFIG) wind power systems and their power converters. It explores both the challenges and concerns of DFIG under a non-ideal grid and introduces the control strategies and effective operations performance options of DFIG under a non-ideal grid. Other topics of this book include thermal analysis of DFIG wind power converters under grid faults; implications of the DFIG test bench; advanced control of DFIG under harmonic distorted grid voltage, including multiple-loop and resonant control; modeling of DFIG and GSC under unbalanced grid voltage; the LFRT of DFIG, including the recurring faults ride through of DFIG; and more. In addition, this resource: Explores the challenges and concerns of Doubly Fed Induction Generators (DFIG) under non-ideal grid Discusses basic concepts of DFIG wind power system and vector control schemes of DFIG Introduces control strategies under a non-ideal grid Includes case studies and simulation and experimental results Advanced Control of Doubly Fed Induction Generator for Wind Power Systems is an ideal book for graduate students studying renewable energy and power electronics as well as for research and development engineers working with wind power converters.


Book Synopsis Advanced Control of Doubly Fed Induction Generator for Wind Power Systems by : Dehong Xu

Download or read book Advanced Control of Doubly Fed Induction Generator for Wind Power Systems written by Dehong Xu and published by John Wiley & Sons. This book was released on 2018-08-14 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covers the fundamental concepts and advanced modelling techniques of Doubly Fed Induction Generators accompanied by analyses and simulation results Filled with illustrations, problems, models, analyses, case studies, selected simulation and experimental results, Advanced Control of Doubly Fed Induction Generator for Wind Power Systems provides the basic concepts for modelling and controlling of Doubly Fed Induction Generator (DFIG) wind power systems and their power converters. It explores both the challenges and concerns of DFIG under a non-ideal grid and introduces the control strategies and effective operations performance options of DFIG under a non-ideal grid. Other topics of this book include thermal analysis of DFIG wind power converters under grid faults; implications of the DFIG test bench; advanced control of DFIG under harmonic distorted grid voltage, including multiple-loop and resonant control; modeling of DFIG and GSC under unbalanced grid voltage; the LFRT of DFIG, including the recurring faults ride through of DFIG; and more. In addition, this resource: Explores the challenges and concerns of Doubly Fed Induction Generators (DFIG) under non-ideal grid Discusses basic concepts of DFIG wind power system and vector control schemes of DFIG Introduces control strategies under a non-ideal grid Includes case studies and simulation and experimental results Advanced Control of Doubly Fed Induction Generator for Wind Power Systems is an ideal book for graduate students studying renewable energy and power electronics as well as for research and development engineers working with wind power converters.


Doubly Fed Induction Machine

Doubly Fed Induction Machine

Author: Gonzalo Abad

Publisher: John Wiley & Sons

Published: 2011-09-28

Total Pages: 578

ISBN-13: 1118104951

DOWNLOAD EBOOK

This book will be focused on the modeling and control of the DFIM based wind turbines. In the first part of the book, the mathematical description of different basic dynamic models of the DFIM will be carried out. It will be accompanied by a detailed steady-state analysis of the machine. After that, a more sophisticated model of the machine that considers grid disturbances, such as voltage dips and unbalances will be also studied. The second part of the book surveys the most relevant control strategies used for the DFIM when it operates at the wind energy generation application. The control techniques studied, range from standard solutions used by wind turbine manufacturers, to the last developments oriented to improve the behavior of high power wind turbines, as well as control and hardware based solutions to address different faulty scenarios of the grid. In addition, the standalone DFIM generation system will be also analyzed.


Book Synopsis Doubly Fed Induction Machine by : Gonzalo Abad

Download or read book Doubly Fed Induction Machine written by Gonzalo Abad and published by John Wiley & Sons. This book was released on 2011-09-28 with total page 578 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book will be focused on the modeling and control of the DFIM based wind turbines. In the first part of the book, the mathematical description of different basic dynamic models of the DFIM will be carried out. It will be accompanied by a detailed steady-state analysis of the machine. After that, a more sophisticated model of the machine that considers grid disturbances, such as voltage dips and unbalances will be also studied. The second part of the book surveys the most relevant control strategies used for the DFIM when it operates at the wind energy generation application. The control techniques studied, range from standard solutions used by wind turbine manufacturers, to the last developments oriented to improve the behavior of high power wind turbines, as well as control and hardware based solutions to address different faulty scenarios of the grid. In addition, the standalone DFIM generation system will be also analyzed.


Control Design and Analysis of Doubly-fed Induction Generator in Wind Power Application

Control Design and Analysis of Doubly-fed Induction Generator in Wind Power Application

Author: Shukul Mazari

Publisher:

Published: 2009

Total Pages: 92

ISBN-13:

DOWNLOAD EBOOK

The work presented in this thesis includes control system design, analysis and grid synchronization of a DFIG (doubly-fed induction generator) driven by a wind turbine using stator-voltage and stator-flux oriented frames. The DFIG is a special type of induction machine which is comprised of two back-to-back converters. One converter connects the DFIG stator to the grid, and the second converter is connected to the rotor of the machine through a DC-link capacitor. In this work, DFIG steady-state and transient models have been created in the d-q reference frame. The steady-state model is used to obtain the relationship between the rotor d-q currents and stator real/reactive power references in a particular orientation frame. The transient model is used to develop the DFIG power control mechanisms. The wind turbine driving torque is modeled by considering typical wind turbine aerodynamic characteristics under variable wind and pitch angle conditions. Comparisons are made to evaluate the differences between DFIG current/power controller in stator-voltage and stator-flux oriented frames. A speed control system has been designed to analyze maximum energy extraction from a DFIG for a particular wind speed. Lastly, the grid synchronization control technique and synchronization method have been proposed as this system requires some care during the machine start-up and integration with the grid. The main aim of the synchronization control process is to avoid heavy start-up currents and mechanical stresses on the turbine shaft and other integrated components. This is achieved by properly matching the phase angle, frequency, and magnitude of the grid voltage and the stator induced voltage irrespective of whether it is a stator-voltage or stator-flux oriented frame used for modeling the generator. Instead of a traditional control scheme using a PLL (phase-locked loop), the rotor d-q reference current is generated with grid voltage as the reference so as to induce identical voltage in the stator as that of the grid. The machine is started by a driving torque and the switch between stator and the grid can be closed for synchronization. However, appropriate timing of switch closure plays a critical role in satisfying the magnitude condition of synchronization. Simulation models have been developed using Matlab®/Simulink® for a GE 1.5 MW generator.


Book Synopsis Control Design and Analysis of Doubly-fed Induction Generator in Wind Power Application by : Shukul Mazari

Download or read book Control Design and Analysis of Doubly-fed Induction Generator in Wind Power Application written by Shukul Mazari and published by . This book was released on 2009 with total page 92 pages. Available in PDF, EPUB and Kindle. Book excerpt: The work presented in this thesis includes control system design, analysis and grid synchronization of a DFIG (doubly-fed induction generator) driven by a wind turbine using stator-voltage and stator-flux oriented frames. The DFIG is a special type of induction machine which is comprised of two back-to-back converters. One converter connects the DFIG stator to the grid, and the second converter is connected to the rotor of the machine through a DC-link capacitor. In this work, DFIG steady-state and transient models have been created in the d-q reference frame. The steady-state model is used to obtain the relationship between the rotor d-q currents and stator real/reactive power references in a particular orientation frame. The transient model is used to develop the DFIG power control mechanisms. The wind turbine driving torque is modeled by considering typical wind turbine aerodynamic characteristics under variable wind and pitch angle conditions. Comparisons are made to evaluate the differences between DFIG current/power controller in stator-voltage and stator-flux oriented frames. A speed control system has been designed to analyze maximum energy extraction from a DFIG for a particular wind speed. Lastly, the grid synchronization control technique and synchronization method have been proposed as this system requires some care during the machine start-up and integration with the grid. The main aim of the synchronization control process is to avoid heavy start-up currents and mechanical stresses on the turbine shaft and other integrated components. This is achieved by properly matching the phase angle, frequency, and magnitude of the grid voltage and the stator induced voltage irrespective of whether it is a stator-voltage or stator-flux oriented frame used for modeling the generator. Instead of a traditional control scheme using a PLL (phase-locked loop), the rotor d-q reference current is generated with grid voltage as the reference so as to induce identical voltage in the stator as that of the grid. The machine is started by a driving torque and the switch between stator and the grid can be closed for synchronization. However, appropriate timing of switch closure plays a critical role in satisfying the magnitude condition of synchronization. Simulation models have been developed using Matlab®/Simulink® for a GE 1.5 MW generator.


Modeling and Analysis of Doubly Fed Induction Generator Wind Energy Systems

Modeling and Analysis of Doubly Fed Induction Generator Wind Energy Systems

Author: Lingling Fan

Publisher: Academic Press

Published: 2015-04-16

Total Pages: 154

ISBN-13: 0128029862

DOWNLOAD EBOOK

Wind Energy Systems: Modeling, Analysis and Control with DFIG provides key information on machine/converter modelling strategies based on space vectors, complex vector, and further frequency-domain variables. It includes applications that focus on wind energy grid integration, with analysis and control explanations with examples. For those working in the field of wind energy integration examining the potential risk of stability is key, this edition looks at how wind energy is modelled, what kind of control systems are adopted, how it interacts with the grid, as well as suitable study approaches. Not only giving principles behind the dynamics of wind energy grid integration system, but also examining different strategies for analysis, such as frequency-domain-based and state-space-based approaches. Focuses on real and reactive power control Supported by PSCAD and Matlab/Simulink examples Considers the difference in control objectives between ac drive systems and grid integration systems


Book Synopsis Modeling and Analysis of Doubly Fed Induction Generator Wind Energy Systems by : Lingling Fan

Download or read book Modeling and Analysis of Doubly Fed Induction Generator Wind Energy Systems written by Lingling Fan and published by Academic Press. This book was released on 2015-04-16 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wind Energy Systems: Modeling, Analysis and Control with DFIG provides key information on machine/converter modelling strategies based on space vectors, complex vector, and further frequency-domain variables. It includes applications that focus on wind energy grid integration, with analysis and control explanations with examples. For those working in the field of wind energy integration examining the potential risk of stability is key, this edition looks at how wind energy is modelled, what kind of control systems are adopted, how it interacts with the grid, as well as suitable study approaches. Not only giving principles behind the dynamics of wind energy grid integration system, but also examining different strategies for analysis, such as frequency-domain-based and state-space-based approaches. Focuses on real and reactive power control Supported by PSCAD and Matlab/Simulink examples Considers the difference in control objectives between ac drive systems and grid integration systems


Advanced Controls for Wind Driven Doubly Fed Induction Generators

Advanced Controls for Wind Driven Doubly Fed Induction Generators

Author: Mahmoud K. Abdelhamid

Publisher: CRC Press

Published: 2023-12-22

Total Pages: 189

ISBN-13: 1003832121

DOWNLOAD EBOOK

Advanced Controls for Wind Driven Doubly Fed Induction Generators discusses the most advanced control algorithms used for enhancing the dynamics of a doubly fed induction generator (DFIG) operating at fixed and variable speeds, and which are used for different utilization purposes (standalone and grid connection). Extensive generator performance analysis has been introduced using various control topologies. Features: Presents modeling of wind energy conversion systems (WECS), including a wind turbine as a prime mover, a DFIG as a generation unit for electrical energy, and a three-phase induction motor as an isolated load Explores a detailed description for the presented control algorithms in order to visualize the base principle of each method Introduces a comprehensive performance analysis for the DFIG using the formulated predictive voltage control scheme and other control techniques under different operating conditions Examines the formulation of new control approaches which overcome the shortages present in previous DFIG control schemes Presents a detailed comparison between different control topologies for the DFIG to outline the most effective procedure in terms of dynamic response, structure simplicity, ripples, total harmonic distortion, and computational burdens The book is written for researchers and academics working on advanced control systems and those interested in areas such as machine drives, renewable energy systems, 'adaptive control', modeling of WECS, and optimization theory.


Book Synopsis Advanced Controls for Wind Driven Doubly Fed Induction Generators by : Mahmoud K. Abdelhamid

Download or read book Advanced Controls for Wind Driven Doubly Fed Induction Generators written by Mahmoud K. Abdelhamid and published by CRC Press. This book was released on 2023-12-22 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced Controls for Wind Driven Doubly Fed Induction Generators discusses the most advanced control algorithms used for enhancing the dynamics of a doubly fed induction generator (DFIG) operating at fixed and variable speeds, and which are used for different utilization purposes (standalone and grid connection). Extensive generator performance analysis has been introduced using various control topologies. Features: Presents modeling of wind energy conversion systems (WECS), including a wind turbine as a prime mover, a DFIG as a generation unit for electrical energy, and a three-phase induction motor as an isolated load Explores a detailed description for the presented control algorithms in order to visualize the base principle of each method Introduces a comprehensive performance analysis for the DFIG using the formulated predictive voltage control scheme and other control techniques under different operating conditions Examines the formulation of new control approaches which overcome the shortages present in previous DFIG control schemes Presents a detailed comparison between different control topologies for the DFIG to outline the most effective procedure in terms of dynamic response, structure simplicity, ripples, total harmonic distortion, and computational burdens The book is written for researchers and academics working on advanced control systems and those interested in areas such as machine drives, renewable energy systems, 'adaptive control', modeling of WECS, and optimization theory.


Power Electronics-Enabled Autonomous Power Systems

Power Electronics-Enabled Autonomous Power Systems

Author: Qing-Chang Zhong

Publisher: John Wiley & Sons

Published: 2020-06-08

Total Pages: 491

ISBN-13: 1118803523

DOWNLOAD EBOOK

Power systems worldwide are going through a paradigm shift from centralized generation to distributed generation. This book presents the SYNDEM (i.e., synchronized and democratized) grid architecture and its technical routes to harmonize the integration of renewable energy sources, electric vehicles, storage systems, and flexible loads, with the synchronization mechanism of synchronous machines, to enable autonomous operation of power systems, and to promote energy freedom. This is a game changer for the grid. It is the sort of breakthrough — like the touch screen in smart phones — that helps to push an industry from one era to the next, as reported by Keith Schneider, a New York Times correspondent since 1982. This book contains an introductory chapter and additional 24 chapters in five parts: Theoretical Framework, First-Generation VSM (virtual synchronous machines), Second-Generation VSM, Third-Generation VSM, and Case Studies. Most of the chapters include experimental results. As the first book of its kind for power electronics-enabled autonomous power systems, it • introduces a holistic architecture applicable to both large and small power systems, including aircraft power systems, ship power systems, microgrids, and supergrids • provides latest research to address the unprecedented challenges faced by power systems and to enhance grid stability, reliability, security, resiliency, and sustainability • demonstrates how future power systems achieve harmonious interaction, prevent local faults from cascading into wide-area blackouts, and operate autonomously with minimized cyber-attacks • highlights the significance of the SYNDEM concept for power systems and beyond Power Electronics-Enabled Autonomous Power Systems is an excellent book for researchers, engineers, and students involved in energy and power systems, electrical and control engineering, and power electronics. The SYNDEM theoretical framework chapter is also suitable for policy makers, legislators, entrepreneurs, commissioners of utility commissions, energy and environmental agency staff, utility personnel, investors, consultants, and attorneys.


Book Synopsis Power Electronics-Enabled Autonomous Power Systems by : Qing-Chang Zhong

Download or read book Power Electronics-Enabled Autonomous Power Systems written by Qing-Chang Zhong and published by John Wiley & Sons. This book was released on 2020-06-08 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: Power systems worldwide are going through a paradigm shift from centralized generation to distributed generation. This book presents the SYNDEM (i.e., synchronized and democratized) grid architecture and its technical routes to harmonize the integration of renewable energy sources, electric vehicles, storage systems, and flexible loads, with the synchronization mechanism of synchronous machines, to enable autonomous operation of power systems, and to promote energy freedom. This is a game changer for the grid. It is the sort of breakthrough — like the touch screen in smart phones — that helps to push an industry from one era to the next, as reported by Keith Schneider, a New York Times correspondent since 1982. This book contains an introductory chapter and additional 24 chapters in five parts: Theoretical Framework, First-Generation VSM (virtual synchronous machines), Second-Generation VSM, Third-Generation VSM, and Case Studies. Most of the chapters include experimental results. As the first book of its kind for power electronics-enabled autonomous power systems, it • introduces a holistic architecture applicable to both large and small power systems, including aircraft power systems, ship power systems, microgrids, and supergrids • provides latest research to address the unprecedented challenges faced by power systems and to enhance grid stability, reliability, security, resiliency, and sustainability • demonstrates how future power systems achieve harmonious interaction, prevent local faults from cascading into wide-area blackouts, and operate autonomously with minimized cyber-attacks • highlights the significance of the SYNDEM concept for power systems and beyond Power Electronics-Enabled Autonomous Power Systems is an excellent book for researchers, engineers, and students involved in energy and power systems, electrical and control engineering, and power electronics. The SYNDEM theoretical framework chapter is also suitable for policy makers, legislators, entrepreneurs, commissioners of utility commissions, energy and environmental agency staff, utility personnel, investors, consultants, and attorneys.