Optimized LCAO Method and the Electronic Structure of Extended Systems

Optimized LCAO Method and the Electronic Structure of Extended Systems

Author: Helmut Eschrig

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2022-01-19

Total Pages: 229

ISBN-13: 3112483464

DOWNLOAD EBOOK


Book Synopsis Optimized LCAO Method and the Electronic Structure of Extended Systems by : Helmut Eschrig

Download or read book Optimized LCAO Method and the Electronic Structure of Extended Systems written by Helmut Eschrig and published by Walter de Gruyter GmbH & Co KG. This book was released on 2022-01-19 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Electronic Structure Methods for Complex Materials

Electronic Structure Methods for Complex Materials

Author: Wai-Yim Ching

Publisher: Oxford University Press

Published: 2012-05-17

Total Pages: 325

ISBN-13: 0199575800

DOWNLOAD EBOOK

This book details the application of the OLCAO method for calculating the properties of solids from fundamental principles to a wide array of material systems. The method specializes in large and complex models and is able to compute a variety of useful properties including electronic, optical, and spectroscopic properties.


Book Synopsis Electronic Structure Methods for Complex Materials by : Wai-Yim Ching

Download or read book Electronic Structure Methods for Complex Materials written by Wai-Yim Ching and published by Oxford University Press. This book was released on 2012-05-17 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book details the application of the OLCAO method for calculating the properties of solids from fundamental principles to a wide array of material systems. The method specializes in large and complex models and is able to compute a variety of useful properties including electronic, optical, and spectroscopic properties.


Solid State Physics

Solid State Physics

Author: Giuseppe Grosso

Publisher: Academic Press

Published: 2013-10-17

Total Pages: 872

ISBN-13: 0123850312

DOWNLOAD EBOOK

Solid State Physics is a textbook for students of physics, material science, chemistry, and engineering. It is the state-of-the-art presentation of the theoretical foundations and application of the quantum structure of matter and materials. This second edition provides timely coverage of the most important scientific breakthroughs of the last decade (especially in low-dimensional systems and quantum transport). It helps build readers' understanding of the newest advances in condensed matter physics with rigorous yet clear mathematics. Examples are an integral part of the text, carefully designed to apply the fundamental principles illustrated in the text to currently active topics of research. Basic concepts and recent advances in the field are explained in tutorial style and organized in an intuitive manner. The book is a basic reference work for students, researchers, and lecturers in any area of solid-state physics. Features additional material on nanostructures, giving students and lecturers the most significant features of low-dimensional systems, with focus on carbon allotropes Offers detailed explanation of dissipative and nondissipative transport, and explains the essential aspects in a field, which is commonly overlooked in textbooks Additional material in the classical and quantum Hall effect offers further aspects on magnetotransport, with particular emphasis on the current profiles Gives a broad overview of the band structure of solids, as well as presenting the foundations of the electronic band structure. Also features reported with new and revised material, which leads to the latest research


Book Synopsis Solid State Physics by : Giuseppe Grosso

Download or read book Solid State Physics written by Giuseppe Grosso and published by Academic Press. This book was released on 2013-10-17 with total page 872 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solid State Physics is a textbook for students of physics, material science, chemistry, and engineering. It is the state-of-the-art presentation of the theoretical foundations and application of the quantum structure of matter and materials. This second edition provides timely coverage of the most important scientific breakthroughs of the last decade (especially in low-dimensional systems and quantum transport). It helps build readers' understanding of the newest advances in condensed matter physics with rigorous yet clear mathematics. Examples are an integral part of the text, carefully designed to apply the fundamental principles illustrated in the text to currently active topics of research. Basic concepts and recent advances in the field are explained in tutorial style and organized in an intuitive manner. The book is a basic reference work for students, researchers, and lecturers in any area of solid-state physics. Features additional material on nanostructures, giving students and lecturers the most significant features of low-dimensional systems, with focus on carbon allotropes Offers detailed explanation of dissipative and nondissipative transport, and explains the essential aspects in a field, which is commonly overlooked in textbooks Additional material in the classical and quantum Hall effect offers further aspects on magnetotransport, with particular emphasis on the current profiles Gives a broad overview of the band structure of solids, as well as presenting the foundations of the electronic band structure. Also features reported with new and revised material, which leads to the latest research


Electronic Structure of Alloys, Surfaces and Clusters

Electronic Structure of Alloys, Surfaces and Clusters

Author: Abhijit Mookerjee

Publisher: CRC Press

Published: 2002-11-28

Total Pages: 384

ISBN-13: 1482288125

DOWNLOAD EBOOK

Understanding the electronic structure of solids is a basic part of theoretical investigation in physics. Application of investigative techniques requires the solid under investigation to be "periodic." However, this is not always the case. This volume addresses three classes of "non-periodic" solids currently undergoing the most study: alloys, sur


Book Synopsis Electronic Structure of Alloys, Surfaces and Clusters by : Abhijit Mookerjee

Download or read book Electronic Structure of Alloys, Surfaces and Clusters written by Abhijit Mookerjee and published by CRC Press. This book was released on 2002-11-28 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding the electronic structure of solids is a basic part of theoretical investigation in physics. Application of investigative techniques requires the solid under investigation to be "periodic." However, this is not always the case. This volume addresses three classes of "non-periodic" solids currently undergoing the most study: alloys, sur


Electronic Structure and Physical Properties of Solids

Electronic Structure and Physical Properties of Solids

Author: Hugues Dreysse

Publisher: Springer Science & Business Media

Published: 2000-04-14

Total Pages: 463

ISBN-13: 3540672389

DOWNLOAD EBOOK

A very comprehensive book, enabling the reader to understand the basic formalisms used in electronic structure determination and particularly the "Muffin Tin Orbitals" methods. The latest developments are presented, providing a very detailed description of the "Full Potential" schemes. This book will provide a real state of the art, since almost all of the contributions on formalism have not been, and will not be, published elsewhere. This book will become a standard reference volume. Moreover, applications in very active fields of today's research on magnetism are presented. A wide spectrum of such questions is covered by this book. For instance, the paper on interlayer exchange coupling should become a "classic", since there has been fantastic experimental activity for 10 years and this can be considered to be the "final" theoretical answer to this question. This work has never been presented in such a complete form.


Book Synopsis Electronic Structure and Physical Properties of Solids by : Hugues Dreysse

Download or read book Electronic Structure and Physical Properties of Solids written by Hugues Dreysse and published by Springer Science & Business Media. This book was released on 2000-04-14 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: A very comprehensive book, enabling the reader to understand the basic formalisms used in electronic structure determination and particularly the "Muffin Tin Orbitals" methods. The latest developments are presented, providing a very detailed description of the "Full Potential" schemes. This book will provide a real state of the art, since almost all of the contributions on formalism have not been, and will not be, published elsewhere. This book will become a standard reference volume. Moreover, applications in very active fields of today's research on magnetism are presented. A wide spectrum of such questions is covered by this book. For instance, the paper on interlayer exchange coupling should become a "classic", since there has been fantastic experimental activity for 10 years and this can be considered to be the "final" theoretical answer to this question. This work has never been presented in such a complete form.


Electronic Structure Calculations on Graphics Processing Units

Electronic Structure Calculations on Graphics Processing Units

Author: Ross C. Walker

Publisher: John Wiley & Sons

Published: 2016-02-16

Total Pages: 368

ISBN-13: 1118670698

DOWNLOAD EBOOK

Electronic Structure Calculations on Graphics Processing Units: From Quantum Chemistry to Condensed Matter Physics provides an overview of computing on graphics processing units (GPUs), a brief introduction to GPU programming, and the latest examples of code developments and applications for the most widely used electronic structure methods. The book covers all commonly used basis sets including localized Gaussian and Slater type basis functions, plane waves, wavelets and real-space grid-based approaches. The chapters expose details on the calculation of two-electron integrals, exchange-correlation quadrature, Fock matrix formation, solution of the self-consistent field equations, calculation of nuclear gradients to obtain forces, and methods to treat excited states within DFT. Other chapters focus on semiempirical and correlated wave function methods including density fitted second order Møller-Plesset perturbation theory and both iterative and perturbative single- and multireference coupled cluster methods. Electronic Structure Calculations on Graphics Processing Units: From Quantum Chemistry to Condensed Matter Physics presents an accessible overview of the field for graduate students and senior researchers of theoretical and computational chemistry, condensed matter physics and materials science, as well as software developers looking for an entry point into the realm of GPU and hybrid GPU/CPU programming for electronic structure calculations.


Book Synopsis Electronic Structure Calculations on Graphics Processing Units by : Ross C. Walker

Download or read book Electronic Structure Calculations on Graphics Processing Units written by Ross C. Walker and published by John Wiley & Sons. This book was released on 2016-02-16 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electronic Structure Calculations on Graphics Processing Units: From Quantum Chemistry to Condensed Matter Physics provides an overview of computing on graphics processing units (GPUs), a brief introduction to GPU programming, and the latest examples of code developments and applications for the most widely used electronic structure methods. The book covers all commonly used basis sets including localized Gaussian and Slater type basis functions, plane waves, wavelets and real-space grid-based approaches. The chapters expose details on the calculation of two-electron integrals, exchange-correlation quadrature, Fock matrix formation, solution of the self-consistent field equations, calculation of nuclear gradients to obtain forces, and methods to treat excited states within DFT. Other chapters focus on semiempirical and correlated wave function methods including density fitted second order Møller-Plesset perturbation theory and both iterative and perturbative single- and multireference coupled cluster methods. Electronic Structure Calculations on Graphics Processing Units: From Quantum Chemistry to Condensed Matter Physics presents an accessible overview of the field for graduate students and senior researchers of theoretical and computational chemistry, condensed matter physics and materials science, as well as software developers looking for an entry point into the realm of GPU and hybrid GPU/CPU programming for electronic structure calculations.


The Augmented Spherical Wave Method

The Augmented Spherical Wave Method

Author: Volker Eyert

Publisher: Springer

Published: 2007-06-26

Total Pages: 324

ISBN-13: 3540710078

DOWNLOAD EBOOK

The Augmented Spherical Wave (ASW) method is one of the powerful approaches to handle the requirement of finite basis sets in DFT calculations. It is particularly suited for the calculation of elastic properties and phonon spectra of solid-state materials. This book addresses all those who want to learn about methods for electronic structure calculations and the ASW method in particular.


Book Synopsis The Augmented Spherical Wave Method by : Volker Eyert

Download or read book The Augmented Spherical Wave Method written by Volker Eyert and published by Springer. This book was released on 2007-06-26 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Augmented Spherical Wave (ASW) method is one of the powerful approaches to handle the requirement of finite basis sets in DFT calculations. It is particularly suited for the calculation of elastic properties and phonon spectra of solid-state materials. This book addresses all those who want to learn about methods for electronic structure calculations and the ASW method in particular.


Computational Methods for Large Systems

Computational Methods for Large Systems

Author: Jeffrey R. Reimers

Publisher: John Wiley & Sons

Published: 2011-08-24

Total Pages: 568

ISBN-13: 0470934727

DOWNLOAD EBOOK

While its results normally complement the information obtained by chemical experiments, computer computations can in some cases predict unobserved chemical phenomena Electronic-Structure Computational Methods for Large Systems gives readers a simple description of modern electronic-structure techniques. It shows what techniques are pertinent for particular problems in biotechnology and nanotechnology and provides a balanced treatment of topics that teach strengths and weaknesses, appropriate and inappropriate methods. It’s a book that will enhance the your calculating confidence and improve your ability to predict new effects and solve new problems.


Book Synopsis Computational Methods for Large Systems by : Jeffrey R. Reimers

Download or read book Computational Methods for Large Systems written by Jeffrey R. Reimers and published by John Wiley & Sons. This book was released on 2011-08-24 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: While its results normally complement the information obtained by chemical experiments, computer computations can in some cases predict unobserved chemical phenomena Electronic-Structure Computational Methods for Large Systems gives readers a simple description of modern electronic-structure techniques. It shows what techniques are pertinent for particular problems in biotechnology and nanotechnology and provides a balanced treatment of topics that teach strengths and weaknesses, appropriate and inappropriate methods. It’s a book that will enhance the your calculating confidence and improve your ability to predict new effects and solve new problems.


Electron-Electron Correlation Effects in Low-Dimensional Conductors and Superconductors

Electron-Electron Correlation Effects in Low-Dimensional Conductors and Superconductors

Author: Alexandr A. Ovchinnikov

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 170

ISBN-13: 3642767532

DOWNLOAD EBOOK

Advances in the physics and chemistry of low-dimensional systems have been really magnificent in the last few decades. Hundreds of quasi-one-dimensional and quasi-two-dimensional systems have been synthesized and studied. The most popular representatives of quasi-one-dimensional materials are polyacethylenes CH [1] and conducting donor-acceptor molecular crystals TIF z TCNQ. Examples of quasi-two-dimensional systems are high temperature su perconductors (HTSC) based on copper oxides LA2CU04, YBa2Cu306+y and organic superconductors based on BEDT -TIP molecules. The properties of such one- and two-dimensional materials are not yet fully understood. On the one hand, the equations of motion of one-dimensional sys tems are rather simple, which facilitates rigorous solutions of model problems. On the other hand, manifestations of various interactions in one-dimensional systems are rather peculiar. This refers, in particular, to electron--electron and electron-phonon interactions. Even within the limit of a weak coupling con stant electron--electron correlations produce an energy gap in the spectrum of one-dimensional metals implying a Mott transition from metal to semiconductor state. In all these cases perturbation theory is inapplicable. Which is one of the main difficulties on the way towards a comprehensive theory of quasi-one-dimensional systems. - This meeting held at the Institute for Theoretical Physics in Kiev May 15-18 1990 was devoted to related problems. The papers selected for this volume are grouped into three sections.


Book Synopsis Electron-Electron Correlation Effects in Low-Dimensional Conductors and Superconductors by : Alexandr A. Ovchinnikov

Download or read book Electron-Electron Correlation Effects in Low-Dimensional Conductors and Superconductors written by Alexandr A. Ovchinnikov and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in the physics and chemistry of low-dimensional systems have been really magnificent in the last few decades. Hundreds of quasi-one-dimensional and quasi-two-dimensional systems have been synthesized and studied. The most popular representatives of quasi-one-dimensional materials are polyacethylenes CH [1] and conducting donor-acceptor molecular crystals TIF z TCNQ. Examples of quasi-two-dimensional systems are high temperature su perconductors (HTSC) based on copper oxides LA2CU04, YBa2Cu306+y and organic superconductors based on BEDT -TIP molecules. The properties of such one- and two-dimensional materials are not yet fully understood. On the one hand, the equations of motion of one-dimensional sys tems are rather simple, which facilitates rigorous solutions of model problems. On the other hand, manifestations of various interactions in one-dimensional systems are rather peculiar. This refers, in particular, to electron--electron and electron-phonon interactions. Even within the limit of a weak coupling con stant electron--electron correlations produce an energy gap in the spectrum of one-dimensional metals implying a Mott transition from metal to semiconductor state. In all these cases perturbation theory is inapplicable. Which is one of the main difficulties on the way towards a comprehensive theory of quasi-one-dimensional systems. - This meeting held at the Institute for Theoretical Physics in Kiev May 15-18 1990 was devoted to related problems. The papers selected for this volume are grouped into three sections.


Bio-Inspired and Nanoscale Integrated Computing

Bio-Inspired and Nanoscale Integrated Computing

Author: Mary Mehrnoosh Eshaghian-Wilner

Publisher: John Wiley & Sons

Published: 2009-09-22

Total Pages: 573

ISBN-13: 0470429976

DOWNLOAD EBOOK

Brings the latest advances in nanotechnology and biology to computing This pioneering book demonstrates how nanotechnology can create even faster, denser computing architectures and algorithms. Furthermore, it draws from the latest advances in biology with a focus on bio-inspired computing at the nanoscale, bringing to light several new and innovative applications such as nanoscale implantable biomedical devices and neural networks. Bio-Inspired and Nanoscale Integrated Computing features an expert team of interdisciplinary authors who offer readers the benefit of their own breakthroughs in integrated computing as well as a thorough investigation and analyses of the literature. Carefully edited, the book begins with an introductory chapter providing a general overview of the field. It ends with a chapter setting forth the common themes that tie the chapters together as well as a forecast of emerging avenues of research. Among the important topics addressed in the book are modeling of nano devices, quantum computing, quantum dot cellular automata, dielectrophoretic reconfigurable nano architectures, multilevel and three-dimensional nanomagnetic recording, spin-wave architectures and algorithms, fault-tolerant nanocomputing, molecular computing, self-assembly of supramolecular nanostructures, DNA nanotechnology and computing, nanoscale DNA sequence matching, medical nanorobotics, heterogeneous nanostructures for biomedical diagnostics, biomimetic cortical nanocircuits, bio-applications of carbon nanotubes, and nanoscale image processing. Readers in electrical engineering, computer science, and computational biology will gain new insights into how bio-inspired and nanoscale devices can be used to design the next generation of enhanced integrated circuits.


Book Synopsis Bio-Inspired and Nanoscale Integrated Computing by : Mary Mehrnoosh Eshaghian-Wilner

Download or read book Bio-Inspired and Nanoscale Integrated Computing written by Mary Mehrnoosh Eshaghian-Wilner and published by John Wiley & Sons. This book was released on 2009-09-22 with total page 573 pages. Available in PDF, EPUB and Kindle. Book excerpt: Brings the latest advances in nanotechnology and biology to computing This pioneering book demonstrates how nanotechnology can create even faster, denser computing architectures and algorithms. Furthermore, it draws from the latest advances in biology with a focus on bio-inspired computing at the nanoscale, bringing to light several new and innovative applications such as nanoscale implantable biomedical devices and neural networks. Bio-Inspired and Nanoscale Integrated Computing features an expert team of interdisciplinary authors who offer readers the benefit of their own breakthroughs in integrated computing as well as a thorough investigation and analyses of the literature. Carefully edited, the book begins with an introductory chapter providing a general overview of the field. It ends with a chapter setting forth the common themes that tie the chapters together as well as a forecast of emerging avenues of research. Among the important topics addressed in the book are modeling of nano devices, quantum computing, quantum dot cellular automata, dielectrophoretic reconfigurable nano architectures, multilevel and three-dimensional nanomagnetic recording, spin-wave architectures and algorithms, fault-tolerant nanocomputing, molecular computing, self-assembly of supramolecular nanostructures, DNA nanotechnology and computing, nanoscale DNA sequence matching, medical nanorobotics, heterogeneous nanostructures for biomedical diagnostics, biomimetic cortical nanocircuits, bio-applications of carbon nanotubes, and nanoscale image processing. Readers in electrical engineering, computer science, and computational biology will gain new insights into how bio-inspired and nanoscale devices can be used to design the next generation of enhanced integrated circuits.