Exterior Differential Systems and Equivalence Problems

Exterior Differential Systems and Equivalence Problems

Author: Kichoon Yang

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 206

ISBN-13: 9401580685

DOWNLOAD EBOOK

This monograph presents a concise yet elementary account of exterior differential system theory so that it can be quickly applied to problems. The first part of the monograph, Chapters 1-5, deals with the general theory: the Cartan-Kaehler theorem is proved, the notions of involution and prolongation are carefully laid out, quasi-linear differential systems are examined in detail, and explicit examples of the Spencer cohomology groups and the characteristic variety are given. The second part of the monograph, Chapters 6 and 7, deals with applications to problems in differential geometry: the isometric embedding theorem of Cartan-Janet and its various geometric ramifications are discussed, a proof of the Andreotti-Hill theorem on the O-R embedding problem is given, and embeddings of abstract projective structures are discussed. For researchers and graduate students who would like a good introduction to exterior differential systems. This volume will also be particularly useful to those whose work involves differential geometry and partial differential equations.


Book Synopsis Exterior Differential Systems and Equivalence Problems by : Kichoon Yang

Download or read book Exterior Differential Systems and Equivalence Problems written by Kichoon Yang and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents a concise yet elementary account of exterior differential system theory so that it can be quickly applied to problems. The first part of the monograph, Chapters 1-5, deals with the general theory: the Cartan-Kaehler theorem is proved, the notions of involution and prolongation are carefully laid out, quasi-linear differential systems are examined in detail, and explicit examples of the Spencer cohomology groups and the characteristic variety are given. The second part of the monograph, Chapters 6 and 7, deals with applications to problems in differential geometry: the isometric embedding theorem of Cartan-Janet and its various geometric ramifications are discussed, a proof of the Andreotti-Hill theorem on the O-R embedding problem is given, and embeddings of abstract projective structures are discussed. For researchers and graduate students who would like a good introduction to exterior differential systems. This volume will also be particularly useful to those whose work involves differential geometry and partial differential equations.


Exterior Differential Systems

Exterior Differential Systems

Author: Robert L. Bryant

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 483

ISBN-13: 1461397146

DOWNLOAD EBOOK

This book gives a treatment of exterior differential systems. It will in clude both the general theory and various applications. An exterior differential system is a system of equations on a manifold defined by equating to zero a number of exterior differential forms. When all the forms are linear, it is called a pfaffian system. Our object is to study its integral manifolds, i. e. , submanifolds satisfying all the equations of the system. A fundamental fact is that every equation implies the one obtained by exterior differentiation, so that the complete set of equations associated to an exterior differential system constitutes a differential ideal in the algebra of all smooth forms. Thus the theory is coordinate-free and computations typically have an algebraic character; however, even when coordinates are used in intermediate steps, the use of exterior algebra helps to efficiently guide the computations, and as a consequence the treatment adapts well to geometrical and physical problems. A system of partial differential equations, with any number of inde pendent and dependent variables and involving partial derivatives of any order, can be written as an exterior differential system. In this case we are interested in integral manifolds on which certain coordinates remain independent. The corresponding notion in exterior differential systems is the independence condition: certain pfaffian forms remain linearly indepen dent. Partial differential equations and exterior differential systems with an independence condition are essentially the same object.


Book Synopsis Exterior Differential Systems by : Robert L. Bryant

Download or read book Exterior Differential Systems written by Robert L. Bryant and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 483 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a treatment of exterior differential systems. It will in clude both the general theory and various applications. An exterior differential system is a system of equations on a manifold defined by equating to zero a number of exterior differential forms. When all the forms are linear, it is called a pfaffian system. Our object is to study its integral manifolds, i. e. , submanifolds satisfying all the equations of the system. A fundamental fact is that every equation implies the one obtained by exterior differentiation, so that the complete set of equations associated to an exterior differential system constitutes a differential ideal in the algebra of all smooth forms. Thus the theory is coordinate-free and computations typically have an algebraic character; however, even when coordinates are used in intermediate steps, the use of exterior algebra helps to efficiently guide the computations, and as a consequence the treatment adapts well to geometrical and physical problems. A system of partial differential equations, with any number of inde pendent and dependent variables and involving partial derivatives of any order, can be written as an exterior differential system. In this case we are interested in integral manifolds on which certain coordinates remain independent. The corresponding notion in exterior differential systems is the independence condition: certain pfaffian forms remain linearly indepen dent. Partial differential equations and exterior differential systems with an independence condition are essentially the same object.


Exterior Differential Systems and Euler-Lagrange Partial Differential Equations

Exterior Differential Systems and Euler-Lagrange Partial Differential Equations

Author: Robert Bryant

Publisher: University of Chicago Press

Published: 2003-07

Total Pages: 230

ISBN-13: 9780226077932

DOWNLOAD EBOOK

In Exterior Differential Systems, the authors present the results of their ongoing development of a theory of the geometry of differential equations, focusing especially on Lagrangians and Poincaré-Cartan forms. They also cover certain aspects of the theory of exterior differential systems, which provides the language and techniques for the entire study. Because it plays a central role in uncovering geometric properties of differential equations, the method of equivalence is particularly emphasized. In addition, the authors discuss conformally invariant systems at length, including results on the classification and application of symmetries and conservation laws. The book also covers the Second Variation, Euler-Lagrange PDE systems, and higher-order conservation laws. This timely synthesis of partial differential equations and differential geometry will be of fundamental importance to both students and experienced researchers working in geometric analysis.


Book Synopsis Exterior Differential Systems and Euler-Lagrange Partial Differential Equations by : Robert Bryant

Download or read book Exterior Differential Systems and Euler-Lagrange Partial Differential Equations written by Robert Bryant and published by University of Chicago Press. This book was released on 2003-07 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: In Exterior Differential Systems, the authors present the results of their ongoing development of a theory of the geometry of differential equations, focusing especially on Lagrangians and Poincaré-Cartan forms. They also cover certain aspects of the theory of exterior differential systems, which provides the language and techniques for the entire study. Because it plays a central role in uncovering geometric properties of differential equations, the method of equivalence is particularly emphasized. In addition, the authors discuss conformally invariant systems at length, including results on the classification and application of symmetries and conservation laws. The book also covers the Second Variation, Euler-Lagrange PDE systems, and higher-order conservation laws. This timely synthesis of partial differential equations and differential geometry will be of fundamental importance to both students and experienced researchers working in geometric analysis.


Exterior Differential Systems

Exterior Differential Systems

Author: Robert L. Bryant

Publisher:

Published: 1991-01

Total Pages: 475

ISBN-13: 9783540974116

DOWNLOAD EBOOK


Book Synopsis Exterior Differential Systems by : Robert L. Bryant

Download or read book Exterior Differential Systems written by Robert L. Bryant and published by . This book was released on 1991-01 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Using the Mathematics Literature

Using the Mathematics Literature

Author: Kristine K. Fowler

Publisher: CRC Press

Published: 2004-05-25

Total Pages: 475

ISBN-13: 1482276445

DOWNLOAD EBOOK

This reference serves as a reader-friendly guide to every basic tool and skill required in the mathematical library and helps mathematicians find resources in any format in the mathematics literature. It lists a wide range of standard texts, journals, review articles, newsgroups, and Internet and database tools for every major subfield in mathemati


Book Synopsis Using the Mathematics Literature by : Kristine K. Fowler

Download or read book Using the Mathematics Literature written by Kristine K. Fowler and published by CRC Press. This book was released on 2004-05-25 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt: This reference serves as a reader-friendly guide to every basic tool and skill required in the mathematical library and helps mathematicians find resources in any format in the mathematics literature. It lists a wide range of standard texts, journals, review articles, newsgroups, and Internet and database tools for every major subfield in mathemati


Geometric Approaches to Differential Equations

Geometric Approaches to Differential Equations

Author: Peter J. Vassiliou

Publisher: Cambridge University Press

Published: 2000-03-13

Total Pages: 242

ISBN-13: 9780521775984

DOWNLOAD EBOOK

A concise and accessible introduction to the wide range of topics in geometric approaches to differential equations.


Book Synopsis Geometric Approaches to Differential Equations by : Peter J. Vassiliou

Download or read book Geometric Approaches to Differential Equations written by Peter J. Vassiliou and published by Cambridge University Press. This book was released on 2000-03-13 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: A concise and accessible introduction to the wide range of topics in geometric approaches to differential equations.


Relativity and Scientific Computing

Relativity and Scientific Computing

Author: Friedrich W Hehl

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 405

ISBN-13: 3642957323

DOWNLOAD EBOOK

For this set of lectures we assumed that the reader has a reasonable back ground in physics and some knowledge of general relativity, the modern theory of gravity in macrophysics, and cosmology. Computer methods are present ed by leading experts in the three main domains: in numerics, in computer algebra, and in visualization. The idea was that each of these subdisciplines is introduced by an extended set of main lectures and that each is conceived as being of comparable 'importance. Therefpre we believe that the book represents a good introduction into scientific I computing for any student who wants to specialize in relativity, gravitation, and/or astrophysics. We took great care to select lecturers who teach in a comprehensible way and who are, at the same time, at the research front of their respective field. In numerics we had the privilege of having a lecturer from the National Center for Supercomputing Applications (NCSA, Champaign, IL, USA) and some from other leading institutions of the world; visualization was taught by a visualization expert from Boeing; and in com puter algebra we took recourse to practitioners of different computer algebra systems as applied to classical general relativity up to quantum gravity and differential geometry.


Book Synopsis Relativity and Scientific Computing by : Friedrich W Hehl

Download or read book Relativity and Scientific Computing written by Friedrich W Hehl and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: For this set of lectures we assumed that the reader has a reasonable back ground in physics and some knowledge of general relativity, the modern theory of gravity in macrophysics, and cosmology. Computer methods are present ed by leading experts in the three main domains: in numerics, in computer algebra, and in visualization. The idea was that each of these subdisciplines is introduced by an extended set of main lectures and that each is conceived as being of comparable 'importance. Therefpre we believe that the book represents a good introduction into scientific I computing for any student who wants to specialize in relativity, gravitation, and/or astrophysics. We took great care to select lecturers who teach in a comprehensible way and who are, at the same time, at the research front of their respective field. In numerics we had the privilege of having a lecturer from the National Center for Supercomputing Applications (NCSA, Champaign, IL, USA) and some from other leading institutions of the world; visualization was taught by a visualization expert from Boeing; and in com puter algebra we took recourse to practitioners of different computer algebra systems as applied to classical general relativity up to quantum gravity and differential geometry.


Lie-Theoretic Ode Numerical Analysis, Mechanics and Differential Systems

Lie-Theoretic Ode Numerical Analysis, Mechanics and Differential Systems

Author: Robert Hermann

Publisher: Math-Sci Press

Published: 1994

Total Pages: 286

ISBN-13: 9780915692453

DOWNLOAD EBOOK


Book Synopsis Lie-Theoretic Ode Numerical Analysis, Mechanics and Differential Systems by : Robert Hermann

Download or read book Lie-Theoretic Ode Numerical Analysis, Mechanics and Differential Systems written by Robert Hermann and published by Math-Sci Press. This book was released on 1994 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt:


Cartan for Beginners

Cartan for Beginners

Author: Thomas Andrew Ivey

Publisher: American Mathematical Soc.

Published: 2003

Total Pages: 394

ISBN-13: 0821833758

DOWNLOAD EBOOK

This book is an introduction to Cartan's approach to differential geometry. Two central methods in Cartan's geometry are the theory of exterior differential systems and the method of moving frames. This book presents thorough and modern treatments of both subjects, including their applications to both classic and contemporary problems. It begins with the classical geometry of surfaces and basic Riemannian geometry in the language of moving frames, along with an elementary introduction to exterior differential systems. Key concepts are developed incrementally with motivating examples leading to definitions, theorems, and proofs. Once the basics of the methods are established, the authors develop applications and advanced topics.One notable application is to complex algebraic geometry, where they expand and update important results from projective differential geometry. The book features an introduction to $G$-structures and a treatment of the theory of connections. The Cartan machinery is also applied to obtain explicit solutions of PDEs via Darboux's method, the method of characteristics, and Cartan's method of equivalence. This text is suitable for a one-year graduate course in differential geometry, and parts of it can be used for a one-semester course. It has numerous exercises and examples throughout. It will also be useful to experts in areas such as PDEs and algebraic geometry who want to learn how moving frames and exterior differential systems apply to their fields.


Book Synopsis Cartan for Beginners by : Thomas Andrew Ivey

Download or read book Cartan for Beginners written by Thomas Andrew Ivey and published by American Mathematical Soc.. This book was released on 2003 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to Cartan's approach to differential geometry. Two central methods in Cartan's geometry are the theory of exterior differential systems and the method of moving frames. This book presents thorough and modern treatments of both subjects, including their applications to both classic and contemporary problems. It begins with the classical geometry of surfaces and basic Riemannian geometry in the language of moving frames, along with an elementary introduction to exterior differential systems. Key concepts are developed incrementally with motivating examples leading to definitions, theorems, and proofs. Once the basics of the methods are established, the authors develop applications and advanced topics.One notable application is to complex algebraic geometry, where they expand and update important results from projective differential geometry. The book features an introduction to $G$-structures and a treatment of the theory of connections. The Cartan machinery is also applied to obtain explicit solutions of PDEs via Darboux's method, the method of characteristics, and Cartan's method of equivalence. This text is suitable for a one-year graduate course in differential geometry, and parts of it can be used for a one-semester course. It has numerous exercises and examples throughout. It will also be useful to experts in areas such as PDEs and algebraic geometry who want to learn how moving frames and exterior differential systems apply to their fields.


Handbook of Global Analysis

Handbook of Global Analysis

Author: Demeter Krupka

Publisher: Elsevier

Published: 2011-08-11

Total Pages: 1243

ISBN-13: 0080556736

DOWNLOAD EBOOK

This is a comprehensive exposition of topics covered by the American Mathematical Society’s classification “Global Analysis , dealing with modern developments in calculus expressed using abstract terminology. It will be invaluable for graduate students and researchers embarking on advanced studies in mathematics and mathematical physics.This book provides a comprehensive coverage of modern global analysis and geometrical mathematical physics, dealing with topics such as; structures on manifolds, pseudogroups, Lie groupoids, and global Finsler geometry; the topology of manifolds and differentiable mappings; differential equations (including ODEs, differential systems and distributions, and spectral theory); variational theory on manifolds, with applications to physics; function spaces on manifolds; jets, natural bundles and generalizations; and non-commutative geometry. - Comprehensive coverage of modern global analysis and geometrical mathematical physics- Written by world-experts in the field- Up-to-date contents


Book Synopsis Handbook of Global Analysis by : Demeter Krupka

Download or read book Handbook of Global Analysis written by Demeter Krupka and published by Elsevier. This book was released on 2011-08-11 with total page 1243 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a comprehensive exposition of topics covered by the American Mathematical Society’s classification “Global Analysis , dealing with modern developments in calculus expressed using abstract terminology. It will be invaluable for graduate students and researchers embarking on advanced studies in mathematics and mathematical physics.This book provides a comprehensive coverage of modern global analysis and geometrical mathematical physics, dealing with topics such as; structures on manifolds, pseudogroups, Lie groupoids, and global Finsler geometry; the topology of manifolds and differentiable mappings; differential equations (including ODEs, differential systems and distributions, and spectral theory); variational theory on manifolds, with applications to physics; function spaces on manifolds; jets, natural bundles and generalizations; and non-commutative geometry. - Comprehensive coverage of modern global analysis and geometrical mathematical physics- Written by world-experts in the field- Up-to-date contents