Download Stabilization And Dynamic Of Premixed Swirling Flames full books in PDF, epub, and Kindle. Read online Stabilization And Dynamic Of Premixed Swirling Flames ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Stabilization and Dynamic of Premixed Swirling Flames: Prevaporized, Stratified, Partially, and Fully Premixed Regimes focuses on swirling flames in various premixed modes (stratified, partially, fully, prevaporized) for the combustor, and development and design of current and future swirl-stabilized combustion systems. This includes predicting capabilities, modeling of turbulent combustion, liquid fuel modeling, and a complete overview of stabilization of these flames in aeroengines. The book also discusses the effects of the operating envelope on upstream fresh gases and the subsequent impact of flame speed, combustion, and mixing, the theoretical framework for flame stabilization, and fully lean premixed injector design. Specific attention is paid to ground gas turbine applications, and a comprehensive review of stabilization mechanisms for premixed, partially-premixed, and stratified premixed flames. The last chapter covers the design of a fully premixed injector for future jet engine applications. Features a complete view of the challenges at the intersection of swirling flame combustors, their requirements, and the physics of fluids at work Addresses the challenges of turbulent combustion modeling with numerical simulations Includes the presentation of the very latest numerical results and analyses of flashback, lean blowout, and combustion instabilities Covers the design of a fully premixed injector for future jet engine applications
Book Synopsis Stabilization and Dynamic of Premixed Swirling Flames by : Paul Palies
Download or read book Stabilization and Dynamic of Premixed Swirling Flames written by Paul Palies and published by Academic Press. This book was released on 2020-07-03 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stabilization and Dynamic of Premixed Swirling Flames: Prevaporized, Stratified, Partially, and Fully Premixed Regimes focuses on swirling flames in various premixed modes (stratified, partially, fully, prevaporized) for the combustor, and development and design of current and future swirl-stabilized combustion systems. This includes predicting capabilities, modeling of turbulent combustion, liquid fuel modeling, and a complete overview of stabilization of these flames in aeroengines. The book also discusses the effects of the operating envelope on upstream fresh gases and the subsequent impact of flame speed, combustion, and mixing, the theoretical framework for flame stabilization, and fully lean premixed injector design. Specific attention is paid to ground gas turbine applications, and a comprehensive review of stabilization mechanisms for premixed, partially-premixed, and stratified premixed flames. The last chapter covers the design of a fully premixed injector for future jet engine applications. Features a complete view of the challenges at the intersection of swirling flame combustors, their requirements, and the physics of fluids at work Addresses the challenges of turbulent combustion modeling with numerical simulations Includes the presentation of the very latest numerical results and analyses of flashback, lean blowout, and combustion instabilities Covers the design of a fully premixed injector for future jet engine applications
The prevalence of gas turbines operating in primarily lean premixed modes is predicated on the need for lower emissions and increased efficiency. An enhancement in the mixing process through the introduction of swirl in the combustion reactants is also necessary for flame stabilization. The resulting lean swirling flames are often characterized by a susceptibility to feedback between velocity, pressure and heat release perturbations with a potential for unstable self-amplifying dynamics. The existing literature on combustion dynamics is predominantly dedicated to premixed flame configurations motivated by power generation and propulsive gas turbine applications. In the present research effort, an investigation into the response of atmospheric, non-premixed swirling flames to acoustic perturbations at various frequencies (f[subscript p] = 0-315Hz) and swirl intensities (S=0.09 and S=0.34) is carried out. The primary objective of the research effort is to broaden the scope of fundamental understanding in flame dynamics in the literature to include non-premixed swirling flames. Applications of the research effort include control strategies to mitigate the occurrence of combustion instabilities in future power generation gas turbines. Flame heat release is quantitatively measured using a photomultiplier with a 430nm bandpass filter for observing CH* chemiluminescence which is simultaneously imaged with a phase-locked CCD camera. Acoustic perturbations are generated with a loudspeaker at the base of an atmospheric co-flow burner with resulting velocity oscillation amplitudes, [vertical line]u'/U[subscript avg][vertical line] in the 0.03-0.30 range. The dependence of flame dynamics on the relative richness of the flame is investigated by studying various constant fuel flow rate flame configurations. The effect of varying fuel flow rates on the flame response is also examined using with dynamic time-dependent fuel supply rates over the data acquisition period. The Particle Image Velocimetry (PIV) method is used to study the isothermal flow field associated with acoustic pulsing. The acoustic impedance, wavelet analysis, Rayleigh criteria and phase conditioning methods are used to identify fundamental mechanisms common to highly responsive flame configurations.
Book Synopsis Combustion Dynamics and Fluid Mechanics in Acoustically Perturbed Non-premixed Swirl-stabilized Flames by : Uyi O. Idahosa
Download or read book Combustion Dynamics and Fluid Mechanics in Acoustically Perturbed Non-premixed Swirl-stabilized Flames written by Uyi O. Idahosa and published by . This book was released on 2010 with total page 161 pages. Available in PDF, EPUB and Kindle. Book excerpt: The prevalence of gas turbines operating in primarily lean premixed modes is predicated on the need for lower emissions and increased efficiency. An enhancement in the mixing process through the introduction of swirl in the combustion reactants is also necessary for flame stabilization. The resulting lean swirling flames are often characterized by a susceptibility to feedback between velocity, pressure and heat release perturbations with a potential for unstable self-amplifying dynamics. The existing literature on combustion dynamics is predominantly dedicated to premixed flame configurations motivated by power generation and propulsive gas turbine applications. In the present research effort, an investigation into the response of atmospheric, non-premixed swirling flames to acoustic perturbations at various frequencies (f[subscript p] = 0-315Hz) and swirl intensities (S=0.09 and S=0.34) is carried out. The primary objective of the research effort is to broaden the scope of fundamental understanding in flame dynamics in the literature to include non-premixed swirling flames. Applications of the research effort include control strategies to mitigate the occurrence of combustion instabilities in future power generation gas turbines. Flame heat release is quantitatively measured using a photomultiplier with a 430nm bandpass filter for observing CH* chemiluminescence which is simultaneously imaged with a phase-locked CCD camera. Acoustic perturbations are generated with a loudspeaker at the base of an atmospheric co-flow burner with resulting velocity oscillation amplitudes, [vertical line]u'/U[subscript avg][vertical line] in the 0.03-0.30 range. The dependence of flame dynamics on the relative richness of the flame is investigated by studying various constant fuel flow rate flame configurations. The effect of varying fuel flow rates on the flame response is also examined using with dynamic time-dependent fuel supply rates over the data acquisition period. The Particle Image Velocimetry (PIV) method is used to study the isothermal flow field associated with acoustic pulsing. The acoustic impedance, wavelet analysis, Rayleigh criteria and phase conditioning methods are used to identify fundamental mechanisms common to highly responsive flame configurations.
Advances in Synthesis Gas: Methods, Technologies and Applications: Syngas Process Modelling and Apparatus Simulation consists of numerical modeling and simulation of different processes and apparatus for producing syngas, purifying it as well as synthesizing different chemical materials or generating heat and energy from syngas. These apparatus and processes include, but are not limited to, reforming, gasification, partial oxidation, swing technologies and membranes. Introduces numerical modeling and the simulation of syngas production processes and apparatus Describes numerical models and simulation procedures utilized for syngas purification processes and equipment Discusses modelling and simulation of processes using syngas as a source for producing chemicals and power
Book Synopsis Advances in Synthesis Gas: Methods, Technologies and Applications by : Mohammad Reza Rahimpour
Download or read book Advances in Synthesis Gas: Methods, Technologies and Applications written by Mohammad Reza Rahimpour and published by Elsevier. This book was released on 2022-10-18 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Synthesis Gas: Methods, Technologies and Applications: Syngas Process Modelling and Apparatus Simulation consists of numerical modeling and simulation of different processes and apparatus for producing syngas, purifying it as well as synthesizing different chemical materials or generating heat and energy from syngas. These apparatus and processes include, but are not limited to, reforming, gasification, partial oxidation, swing technologies and membranes. Introduces numerical modeling and the simulation of syngas production processes and apparatus Describes numerical models and simulation procedures utilized for syngas purification processes and equipment Discusses modelling and simulation of processes using syngas as a source for producing chemicals and power
Gasification provides a series of workflow process fundamentals set within authentic contexts and case studies while exploring the pathways for gasification optimization, the effect of fuel blending in gasification systems, and the use of Computational Fluid Dynamics to describe said processes. Comprehensive in its coverage, this book allows engineering graduate students, advanced undergraduates, researchers and industry practitioners to further advance their own gasification strategy and understanding. Key features: Compares gasification with pyrolysis and combustion. Covers broad gasification mechanisms, experimental procedures, and numerical modelling. Provides techno-economic analysis applied to gasification systems coupled with risk analysis. Describes state-of-the-art processes concerning the co-firing of ammonia, coal and biomass.
Book Synopsis Gasification by : Valter Bruno Silva
Download or read book Gasification written by Valter Bruno Silva and published by Walter de Gruyter GmbH & Co KG. This book was released on 2023-04-03 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gasification provides a series of workflow process fundamentals set within authentic contexts and case studies while exploring the pathways for gasification optimization, the effect of fuel blending in gasification systems, and the use of Computational Fluid Dynamics to describe said processes. Comprehensive in its coverage, this book allows engineering graduate students, advanced undergraduates, researchers and industry practitioners to further advance their own gasification strategy and understanding. Key features: Compares gasification with pyrolysis and combustion. Covers broad gasification mechanisms, experimental procedures, and numerical modelling. Provides techno-economic analysis applied to gasification systems coupled with risk analysis. Describes state-of-the-art processes concerning the co-firing of ammonia, coal and biomass.
Thermoacoustic Combustion Instability Control: Engineering Applications and Computer Codes provides a unique opportunity for researchers, students and engineers to access recent developments from technical, theoretical and engineering perspectives. The book is a compendium of the most recent advances in theoretical and computational modeling and the thermoacoustic instability phenomena associated with multi-dimensional computing methods and recent developments in signal-processing techniques. These include, but are not restricted to a real-time observer, proper orthogonal decomposition (POD), dynamic mode decomposition, Galerkin expansion, empirical mode decomposition, the Lattice Boltzmann method, and associated numerical and analytical approaches. The fundamental physics of thermoacoustic instability occurs in both macro- and micro-scale combustors. Practical methods for alleviating common problems are presented in the book with an analytical approach to arm readers with the tools they need to apply in their own industrial or research setting. Readers will benefit from practicing the worked examples and the training provided on computer coding for combustion technology to achieve useful results and simulations that advance their knowledge and research. Focuses on applications of theoretical and numerical modes with computer codes relevant to combustion technology Includes the most recent modeling and analytical developments motivated by empirical experimental observations in a highly visual way Provides self-contained chapters that include a comprehensive, introductory section that ensures any readers new to this topic are equipped with required technical terms
Book Synopsis Thermoacoustic Combustion Instability Control by : Dan Zhao
Download or read book Thermoacoustic Combustion Instability Control written by Dan Zhao and published by Academic Press. This book was released on 2023-02-13 with total page 1145 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thermoacoustic Combustion Instability Control: Engineering Applications and Computer Codes provides a unique opportunity for researchers, students and engineers to access recent developments from technical, theoretical and engineering perspectives. The book is a compendium of the most recent advances in theoretical and computational modeling and the thermoacoustic instability phenomena associated with multi-dimensional computing methods and recent developments in signal-processing techniques. These include, but are not restricted to a real-time observer, proper orthogonal decomposition (POD), dynamic mode decomposition, Galerkin expansion, empirical mode decomposition, the Lattice Boltzmann method, and associated numerical and analytical approaches. The fundamental physics of thermoacoustic instability occurs in both macro- and micro-scale combustors. Practical methods for alleviating common problems are presented in the book with an analytical approach to arm readers with the tools they need to apply in their own industrial or research setting. Readers will benefit from practicing the worked examples and the training provided on computer coding for combustion technology to achieve useful results and simulations that advance their knowledge and research. Focuses on applications of theoretical and numerical modes with computer codes relevant to combustion technology Includes the most recent modeling and analytical developments motivated by empirical experimental observations in a highly visual way Provides self-contained chapters that include a comprehensive, introductory section that ensures any readers new to this topic are equipped with required technical terms
This book focuses on the development of novel combustion approaches and burner designs for clean power generation in gas turbines. It shows the reader how to control the release of pollutants to the environment in an effort to reduce global warming. After an introduction to global warming issues and clean power production for gas turbine applications, subsequent chapters address premixed combustion, burner designs for clean power generation, gas turbine performance, and insights on gas turbine operability. Given its scope, the book can be used as a textbook for graduate-level courses on clean combustion, or as a reference book to accompany compact courses for mechanical engineers and young researchers around the world.
Book Synopsis Approaches for Clean Combustion in Gas Turbines by : Medhat A. Nemitallah
Download or read book Approaches for Clean Combustion in Gas Turbines written by Medhat A. Nemitallah and published by Springer Nature. This book was released on 2020-03-24 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the development of novel combustion approaches and burner designs for clean power generation in gas turbines. It shows the reader how to control the release of pollutants to the environment in an effort to reduce global warming. After an introduction to global warming issues and clean power production for gas turbine applications, subsequent chapters address premixed combustion, burner designs for clean power generation, gas turbine performance, and insights on gas turbine operability. Given its scope, the book can be used as a textbook for graduate-level courses on clean combustion, or as a reference book to accompany compact courses for mechanical engineers and young researchers around the world.
The world relies on fossil fuels as its main energy source (86.7% in 1973, 81.7% in 2012). Several factors including the abundance of resources and the existing infrastructure suggest that this is likely to continue in the near future (potentially 75% in 2040). Meanwhile climate change continues to be a pressing concern that calls for the development of low CO2 energy systems. Among the most promising approaches are pre-combustion capture technologies, e.g., coal gasification and natural gas reforming that produce hydrogen-rich fuels. Another approach is oxy-combustion in which air is replaced by a mixture of O2/CO2/H2O as the oxidizer stream. However, modern gas turbines have been optimized to operate on methane-air combustion and several challenges, notably thermo-acoustic instability, arise when using other fuels or oxidizers because of their different thermochemical and transport properties. While these phenomena constitute a major challenge under conventional operations, using hydrogen-rich fuels or CO2-rich oxidizer exacerbates the problem by modifying the combustor stability map in ways that are not well understood. In this thesis, we identify combustion modes most prone to dynamics, predict the onset of thermo-acoustic instability over a wide range of fuel and oxidizer compositions, and define parameters that can scale the data. To this end, a combination of experimental and numerical tools were deployed. We carried out a series of experiments in an optically accessible laboratory-scale swirl-stabilized combustor typical of those found in modern gas turbines, using high-speed chemiluminescence to examine the flame macrostructure; high-speed Particle Image Velocimetry and OH Planar Laser Induced Fluorescence to probe the flow and flame microstructure. Numerical simulations were used to complement experiments and examine the complex three-dimensional two-way interaction between the flame and the turbulent swirling flow. Experimental data were used to construct the stability maps for different CH4-H2 mixtures and analyze the dynamic flame macrostructures and their transitions. A comparison with acoustically uncoupled combustion shows that the onset of thermo-acoustic instability is concomitant with a specific transition associated with the intermittent appearance of the flame in the outer recirculation zone (ORZ) and stabilization along the outer shear layer (forming between the swirling jet and the ORZ, as revealed by the PIV-PLIF data). The sudden onset of large amplitude limit cycle oscillations and the observed hysteresis suggest the existence of a sub-critical Hopf bifurcation typically characterized by a bistable or "triggering" zone; the flame intermittency in the ORZ can potentially provide the disturbance required to trigger these oscillations. Using a dual-camera method to track chemiluminescence in space and time, this flame transition was found to originate from a reacting kernel that detaches from the inner shear layer flame (forming between the jet and the vortex breakdown zone), reaching the ORZ and spinning at a specific frequency; its characteristic Strouhal number is independent of the Reynolds number and the fuel/oxidizer, only a function of the swirl strength. We propose a new Karlovitz number based criterion that defines the transition on a flow time - flame time space, the former being the inverse of the spinning frequency and the latter being the flame extinction strain rate. According to this scaling, the flame survives in the ORZ if and when it can overcome the region's bulk strain rate. This criterion is valid over a wide range of operating, fuel and oxidizer composition, covering a wide range of fast to slow chemistry scenarios. Given the role of this flame transition in triggering the instability, the same criterion is applicable to predicting the onset of thermo-acoustics. The interaction of the turbulent swirling flow with the flame is further examined using large eddy simulations. Numerical simulations show that the experimentally observed large scale flame structures along the inner shear layer are due to a helical vortex core that originates at the swirler's centerbody. This vortical structure stays aligned with the centerline in the combustor upstream section, but bends and reaches the inner shear layer-stabilized flame around the sudden expansion where it causes the flame wrinkling. We propose that the flame kernel igniting the ORZ/ OSL observed in the experiment may be related to the interaction between the helical vortical structure and the outer shear layer.
Book Synopsis Impact of Fuel and Oxidizer Composition on Premixed Flame Stabilization in Turbulent Swirling Flows by : Soufien Taamallah
Download or read book Impact of Fuel and Oxidizer Composition on Premixed Flame Stabilization in Turbulent Swirling Flows written by Soufien Taamallah and published by . This book was released on 2016 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: The world relies on fossil fuels as its main energy source (86.7% in 1973, 81.7% in 2012). Several factors including the abundance of resources and the existing infrastructure suggest that this is likely to continue in the near future (potentially 75% in 2040). Meanwhile climate change continues to be a pressing concern that calls for the development of low CO2 energy systems. Among the most promising approaches are pre-combustion capture technologies, e.g., coal gasification and natural gas reforming that produce hydrogen-rich fuels. Another approach is oxy-combustion in which air is replaced by a mixture of O2/CO2/H2O as the oxidizer stream. However, modern gas turbines have been optimized to operate on methane-air combustion and several challenges, notably thermo-acoustic instability, arise when using other fuels or oxidizers because of their different thermochemical and transport properties. While these phenomena constitute a major challenge under conventional operations, using hydrogen-rich fuels or CO2-rich oxidizer exacerbates the problem by modifying the combustor stability map in ways that are not well understood. In this thesis, we identify combustion modes most prone to dynamics, predict the onset of thermo-acoustic instability over a wide range of fuel and oxidizer compositions, and define parameters that can scale the data. To this end, a combination of experimental and numerical tools were deployed. We carried out a series of experiments in an optically accessible laboratory-scale swirl-stabilized combustor typical of those found in modern gas turbines, using high-speed chemiluminescence to examine the flame macrostructure; high-speed Particle Image Velocimetry and OH Planar Laser Induced Fluorescence to probe the flow and flame microstructure. Numerical simulations were used to complement experiments and examine the complex three-dimensional two-way interaction between the flame and the turbulent swirling flow. Experimental data were used to construct the stability maps for different CH4-H2 mixtures and analyze the dynamic flame macrostructures and their transitions. A comparison with acoustically uncoupled combustion shows that the onset of thermo-acoustic instability is concomitant with a specific transition associated with the intermittent appearance of the flame in the outer recirculation zone (ORZ) and stabilization along the outer shear layer (forming between the swirling jet and the ORZ, as revealed by the PIV-PLIF data). The sudden onset of large amplitude limit cycle oscillations and the observed hysteresis suggest the existence of a sub-critical Hopf bifurcation typically characterized by a bistable or "triggering" zone; the flame intermittency in the ORZ can potentially provide the disturbance required to trigger these oscillations. Using a dual-camera method to track chemiluminescence in space and time, this flame transition was found to originate from a reacting kernel that detaches from the inner shear layer flame (forming between the jet and the vortex breakdown zone), reaching the ORZ and spinning at a specific frequency; its characteristic Strouhal number is independent of the Reynolds number and the fuel/oxidizer, only a function of the swirl strength. We propose a new Karlovitz number based criterion that defines the transition on a flow time - flame time space, the former being the inverse of the spinning frequency and the latter being the flame extinction strain rate. According to this scaling, the flame survives in the ORZ if and when it can overcome the region's bulk strain rate. This criterion is valid over a wide range of operating, fuel and oxidizer composition, covering a wide range of fast to slow chemistry scenarios. Given the role of this flame transition in triggering the instability, the same criterion is applicable to predicting the onset of thermo-acoustics. The interaction of the turbulent swirling flow with the flame is further examined using large eddy simulations. Numerical simulations show that the experimentally observed large scale flame structures along the inner shear layer are due to a helical vortex core that originates at the swirler's centerbody. This vortical structure stays aligned with the centerline in the combustor upstream section, but bends and reaches the inner shear layer-stabilized flame around the sudden expansion where it causes the flame wrinkling. We propose that the flame kernel igniting the ORZ/ OSL observed in the experiment may be related to the interaction between the helical vortical structure and the outer shear layer.
Flow-induced vibrations and noise continue to cause problems in a wide range of engineering applications ranging from civil engineering and marine structures to power generation and chemical processing. These proceedings bring together more than a hundred papers dealing with a variety of topics relating to flow-induced vibration and noise. The cont
Book Synopsis Flow-Induced Vibration by : S. Ziada
Download or read book Flow-Induced Vibration written by S. Ziada and published by CRC Press. This book was released on 2000-01-01 with total page 862 pages. Available in PDF, EPUB and Kindle. Book excerpt: Flow-induced vibrations and noise continue to cause problems in a wide range of engineering applications ranging from civil engineering and marine structures to power generation and chemical processing. These proceedings bring together more than a hundred papers dealing with a variety of topics relating to flow-induced vibration and noise. The cont
Download or read book Chemical Abstracts written by and published by . This book was released on 2002 with total page 2540 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Issues in Mechanical Engineering / 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Mechanical Engineering. The editors have built Issues in Mechanical Engineering: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Mechanical Engineering in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Mechanical Engineering: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
Book Synopsis Issues in Mechanical Engineering: 2011 Edition by :
Download or read book Issues in Mechanical Engineering: 2011 Edition written by and published by ScholarlyEditions. This book was released on 2012-01-09 with total page 2526 pages. Available in PDF, EPUB and Kindle. Book excerpt: Issues in Mechanical Engineering / 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Mechanical Engineering. The editors have built Issues in Mechanical Engineering: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Mechanical Engineering in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Mechanical Engineering: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.